

APPENDIX 2 - Site Photographs

Photograph 1 – Utilities Clearance being undertaken at the proposed location of BH14.

Photograph 2 – Dando 3000 cable percussive drilling rig in position over BH08 with acoustic barriers in place.

Photograph 3 – Pilcon 1500 cable percussive drilling rig in position over BH02 with acoustic barriers in place.

Photograph 4 - Window sample rig in position over WS02.

 ${\it Photograph~5-SA01~before~the~soakaway~test~was~undertaken.}$


Photograph 6 – SAO2A before the soakaway test was undertaken.

 ${\it Photograph~7-SA03~with~the~water~ingress~from~the~shallow~made~ground~soils.}$

 ${\it Photograph~8-TPO3~with~concrete~obstruction~and~services~along~the~faces~of~the~pit.}$

Photograph 9 – TP04.

Photograph 10 – TP09 with staining visible along the southern face of the pit.

Photograph 11 – TP05 post reinstatement.

Photograph 12 – SA01 post reinstatement.

Photograph 13 – BH03 post reinstatement.

Photograph 14 – Wall by BH15 post cleaning up.

APPENDIX 3 - Exploratory Hole Logs

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH01E Sheet 1 of	4
Projec	t Name:	HOLLOW	AY PRI	SON	Project No. GRO-20291		Co-ords:	530096.03 - 185698.77	Hole Type CP	÷
Locati	on:	LONDON					Level:	34.82	Scale 1:50	
Client	•	WATERMA	AN				Dates:	09/02/2021 - 11/02/2021	Logged By BM	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	Otrikes	Depth (m)	Туре	Results	0.10	34.72		MADE GROUND: Tarmac.		
		0.50	ES		0.35 0.35 0.70 0.80	34.47 34.47 34.12 34.02		MADE GROUND: Grey reinforced of MADE GROUND: Geomembrane. MADE GROUND: Orange brown slivery clayey subangular to rounded coarse gravel of chert.	ightly sandy medium to	
		1.20 1.20 1.50 1.50 - 2.00	D ES B	N=5 (1,0/1,1,2,1)	1.10	33.72		MADE GROUND: Grey reinforced of MADE GROUND: Brown fine to me and subrounded to rounded fine to gravel of pea shingle, rare brick and MADE GROUND: Soft orange brow sandy gravelly clay. Gravel is subar	dium sand medium d rare chert. /n slightly	1
		2.00 2.00 2.00 2.50 - 3.00	D ES B	N=6 (1,1/1,2,1,2)	1.90	32.92		subrounded fine to coarse of mixed including brick, chert and quartzite. Soft brown CLAY.	lithologies	2 -
		3.00 3.00 3.00 3.50 - 4.00	D ES B	N=7 (1,1/2,2,1,2)				Soft to firm from 3.50m bgl.		3 -
		4.00 4.00 - 4.45 4.45	ES U D							4 -
		4.50 - 5.00 5.00 5.00 5.00 5.50 - 6.00	B D ES B	N=12 (2,2/2,3,3,4)			Firm from 4.80m bgl.		5 -
		6.00 - 6.45	U							6 —
		6.45 6.50 - 7.00	D B							- - - -
		7.00 7.00 7.50 - 8.00	D B	N=15 (2,2/2,4,4,5)					7 —
		8.00 - 8.45	U							8 —
		8.45 8.50 - 9.00	D B							-
		9.00 9.00 9.50 - 10.00	D B	N=20 (3,3/4,5,6,5)					9 -
		10.00	ES					Continued on next sheet		10 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Dual installation, deep well to 35.00m bgl, shallow well to 3.00m bgl. Deep well comprises 31.00m plain pipe and 4.00m slotted pipe, shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН			Davis et Na	Во	reho	ole Log	Borehole No. BH01E Sheet 2 of 4
Projec	t Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530096.03 - 185698.77	Hole Type CP Scale
Locati	on:	LONDON					Level:	34.82	1:50
Client:		WATERMA	AN				Dates:	09/02/2021 - 11/02/2021	Logged By BM
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		10.00 - 10.45	U	. 100 a.10					
		10.45 10.50 - 11.00	D B		10.60	24.22		Firm to stiff grey CLAY.	
		11.00 11.00	D	N=22 (3,3/5,5,6,6)				11 -
		11.50 - 12.00	В						-
		12.00 - 12.45	U						12 -
		12.45 12.50 - 13.00	D B						-
		13.00 13.00	D	N=24 (3,3/5,6,6,7)			Stiff from 13.00m bgl.	13 —
		13.50 - 14.00	В						
		14.00 - 14.45	U						14 —
		14.45 14.50 - 15.00	D B						
		15.00 15.00 15.00	D ES	N=26 (3,4/5,7,7,7)				15
		16.00 - 16.50	В						16 — -
		16.50 - 16.95	U						
		16.95	D						17 —
		17.50 - 18.00	В						-
		18.00 18.00	D	N=29 (4,4/6,7,8,8)				18
		19.00 - 19.50	В						19 —
		19.50 - 19.95	U						
Remai		19.95	D				<u> </u>	Continued on next sheet	20 -

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Dual installation, deep well to 35.00m bgl, shallow well to 3.00m bgl. Deep well comprises 31.00m plain pipe and 4.00m slotted pipe, shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

	OUNDTE CONSULTING				Project No.	Во		ole Log	Borehole No. BH01E Sheet 3 of 4 Hole Type	
Projec Locati	t Name:	LONDON	AY PRI		GRO-20291		Co-ords:	530096.03 - 185698.77 34.82	CP Scale	
									1:50 Logged By	
Client		WATERM		n Situ Testing			Dates:	09/02/2021 - 11/02/2021	ВМ	_
Well	Water Strikes		Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
		20.00	ES							_
		20.50 - 21.00	В							11111
		21.00 21.00	D	N=33 (12,7/7,9,8,9))			Claystone recorded between 20.80m and 2	11.10m bgl. 21	
		22.00 - 22.50	В						22	
		22.50 - 22.95	U							
		22.95	D						23	
		23.50 - 24.00	В							1111
		24.00 24.00	D	N=35 (5,5/7,9,9,10))				24	
		25.00 25.00 - 25.50	ES B						25	
		25.50 - 25.95	U							1 1 1
		25.95	D				<u> </u>		26	
		26.50 - 27.00 27.00 27.00	B D	N=39 (6,6/8,9,11,1	1)				27	.
		21.00		55 (0,0/0,3,11,1						
		28.00 - 28.50	В						28	
		28.50 - 28.95	U							
		28.95 29.50 - 30.00	D B						29	
		30.00	D					Continued on next sheet	30	

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Dual installation, deep well to 35.00m bgl, shallow well to 3.00m bgl. Deep well comprises 31.00m plain pipe and 4.00m slotted pipe, shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН		ŗ	Project No.	Во	reho	ole Log	Borehole No. BH01E Sheet 4 of 4 Hole Type
Projec	t Name:	HOLLOWA	Y PRI		GRO-20291		Co-ords:	530096.03 - 185698.77	CP Scale
Locati	on:	LONDON					Level:	34.82	1:50
Client		WATERMA	ΑN				Dates:	09/02/2021 - 11/02/2021	Logged By BM
Well	Water Strikes		г	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
	Strikes	Depth (m) 30.00	Type ES	Results	(111)	(111)			
	:	30.00		N=43 (6,7/9,11,11,1.	2)				-
		31.00 - 31.50	В						31 -
		31.50 - 31.95 31.95	U D						32 —
		32.50 - 33.00	В						- - - - -
		33.00 33.00	D	N=47 (7,7/10,10,13,14)					33 -
		34.00 - 34.50	В						34 -
		34.50 - 34.95 34.85 35.00	D ES						35 —
		35.50 - 36.00	В						-
		36.00 36.00	D	N=50 (8,8/50 for 280mm)				Very stiff from 36.00m bgl.	36 -
		37.00 - 37.50	В						37 -
		37.50 37.50	D	N=50 (8,10/50 for 265mm)					38 —
		38.50 - 39.00	В						-
		39.00 39.00	D	N=50 (9,10/50 for 240mm)					39 -
		39.50 - 40.00 40.00	B ES		40.00	-5.18		End of borehole at 40.00 m	

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Dual installation, deep well to 35.00m bgl, shallow well to 3.00m bgl. Deep well comprises 31.00m plain pipe and 4.00m slotted pipe, shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH02 Sheet 1 of	3
Projec	t Name:	HOLLOWA	Y PRI	S() ()	Project No. GRO-20291		Co-ords:	530124.16 - 185678.61	Hole Type CP	e
Locati	on:	LONDON					Level:	35.10	Scale 1:50	
Client		WATERMA	AN				Dates:	25/01/2021 - 26/01/2021	Logged B	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	Ottikes	Depth (m)	Туре	Results	(111)	(111)		MADE GROUND: Tarmac over rein concrete.	forced	-
		0.50 0.50 - 1.00	ES B		0.35	34.75 34.35		MADE GROUND: Soft brown dark of sandy slightly cobbly gravelly clay. Of angular to subangular fine to coarse	Gravel is	-
		1.00 1.20	ES D		0.75	34.35		lithologies including ash, concrete, l quartzite, wood and rare clinker. Co subangular of brick. Slight hydrocar	orick, chert, bbles are	1 -
		1.20	ES	N=5 (1,0/1,2,1,1)				MADE GROUND: Soft brown grey s gravelly clay. Gravel is subangular f of mixed lithologies including ash, c	slightly ine to coarse	- - -
		1.70 - 2.00 2.00 - 2.45	B U		1.90	33.20		brick. Slight hydrocarbon odour. Soft to firm brown CLAY.		2 —
		2.45 2.50 - 3.00 2.70	D B ES							- - - -
		3.00 3.00	D	N=11 (1,1/2,2,3,4)				Firm from 3.20m bgl.		3 -
		3.50 - 4.00 3.70	B ES							-
		4.00 - 4.45	U							4 -
		4.45 4.50 - 5.00 4.70	D B ES							-
		5.00 5.00	D	N=15 (2,2/3,4,4,4)						5 —
		5.50 - 6.00	В							_
		6.00 - 6.45	U							6 -
		6.45 6.50 - 7.00	D B							
		7.00 7.00	D	N=19 (3,3/5,4,5,5)						7 -
		7.50 - 8.00	В							
		8.00 - 8.30	U							8 -
		8.30 - 8.80	В							
		9.00 9.00	D	N=21 (3,3/4,5,6,6)						9 -
		9.50 9.50 - 10.00	ES B							-
Rema		10.00 - 10.45	U					Continued on next sheet		10 -

1. Hand dug to pit 1.20m bgl. 2. No groundwater encountered. 3. Chiselling between 11.10m and 11.70m bgl (90 mins) 4. Dual installation, deep well to 25.00m bgl and shallow well to 3.00m bgl. Deep well comprises 21.00m plain pipe and 4.00m slotted pipe. Shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 5. PID results: 0.5m - 10.9ppm, 1.0m - 7.9ppm, 1.7m - 6.5ppm, all other PID results 0 - 0.2ppm.

	DUNDTE CONSULTING		V DDI	SON	Project No.	Во	reho	ole Log 530124.16 - 185678.61	Borehole N BH02 Sheet 2 of Hole Typ	3
Locati		LONDON	AI FINI	SON	GRO-20291		Level:	35.10	CP Scale	
Client:		WATERMA	AN				Dates:	25/01/2021 - 26/01/2021	1:50 Logged B	у
Well	Water Strikes		and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	BM n	
		10.45 10.50 - 11.00	D B		10.70	24.40				-
		11.00 11.00 11.10 - 11.70	D B	N=50 (4,21/50 for 15mm)		24.40		Stiff grey CLAY. Claystone encountered between 10.70m and	nd 11.10m bgl.	11 —
		12.00 12.00	D	N=27 (3,4/4,6,8,9)						12 —
		12.50 - 13.00	В							-
		13.00 - 13.45	U							13 —
		13.45 13.50 - 14.00	D B							-
		14.00 14.00 14.50 - 15.00	D B	N=25 (4,5/4,5,7,9))					14 -
		14.60 15.00 - 15.45	ES U							15 —
		15.45 15.50 - 16.00	D B							-
		16.00 - 16.50	В							16 -
		16.50 16.50	D	N=30 (5,5/6,7,7,10))					-
		17.00 - 17.50	В							17 —
		18.00 - 18.45	U							18 —
		18.45 18.50 - 19.00	D B							10 —
		19.50 19.50	D	N=32 (5,7/6,8,8,10						19 —
		20.00 - 20.50	В	(0,170,0,0,10	′			Continued on next sheet		20 —

1. Hand dug to pit 1.20m bgl. 2. No groundwater encountered. 3. Chiselling between 11.10m and 11.70m bgl (90 mins) 4. Dual installation, deep well to 25.00m bgl and shallow well to 3.00m bgl. Deep well comprises 21.00m plain pipe and 4.00m slotted pipe. Shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 5. PID results: 0.5m - 10.9ppm, 1.0m - 7.9ppm, 1.7m - 6.5ppm, all other PID results 0 - 0.2ppm.

	OUNDTE CONSULTING			P	roject No.	Во		ole Log	Borehole N BH02 Sheet 3 of Hole Type	3
	t Name:		AY PRI		RO-20291		Co-ords:	530124.16 - 185678.61	CP Scale	
Locati		LONDON					Level:	35.10	1:50 Logged B	у
Client		WATERMA Samples		n Situ Testing		l	Dates:	25/01/2021 - 26/01/2021	ВМ	
Well	Water Strikes	-	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	rks	21.00 - 21.45 21.45 21.50 - 22.00 22.50 23.00 - 23.50 24.00 - 24.45 24.45 24.50 - 25.00 24.60 25.00	U DB D B U DBS ES	N=37 (4,6/8,9,10,10	25.00	10.10		End of borehole at 25.00 m		21

1. Hand dug to pit 1.20m bgl. 2. No groundwater encountered. 3. Chiselling between 11.10m and 11.70m bgl (90 mins) 4. Dual installation, deep well to 25.00m bgl and shallow well to 3.00m bgl. Deep well comprises 21.00m plain pipe and 4.00m slotted pipe. Shallow well comprises 1.00m plain pipe and 2.00m slotted pipe. 5. PID results: 0.5m - 10.9ppm, 1.0m - 7.9ppm, 1.7m - 6.5ppm, all other PID results 0 - 0.2ppm.

									Borehole N	lo.
CDC		CU				Bo	reho	ole Log	BH03	,
GRU	OUNDTE CONSULTING	CH						J	Sheet 1 of	4
Projec	t Name:	HOLLOW	AY PRI	SON	Project No. GRO-20291		Co-ords:	530158.87 - 185642.44	Hole Type CP	9
Locati	on:	LONDON					Level:	34.81	Scale 1:50	
Client	:	WATERMA	AN				Dates:	01/02/2021 - 02/02/2021	Logged By BM	у
Well	Water	Sample	s and	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	•		
					0.30	34.51		MADE GROUND: Tarmac over con-		_
		0.50 0.50 - 1.00	ES B		0.40	34.41		MADE GROUND: Brown slightly class subangular fine to coarse gravel of lithologies including chert, quartzite concrete and rare ash.	mixed	-
		1.00	ES				E	Soft brown CLAY.	5m bal.	1 -
		1.20 1.20	D	N=7 (1,1/1,2,2,2)				Slight diesel odour between 0.40m and 0.66 Soft to firm from 1.00m bgl.		
		1.70	ES							-
		1.70 - 2.00 2.00 - 2.45	B U							2 -
		2.45	D							-
		2.50 2.50 - 3.00	ES B					Firm from 3.00m bgl.		-
		3.00	D				E-E-E			3 —
		3.00		N=10 (1,2/1,3,3,3))					-
		3.50	ES							
		3.50 - 4.00	В				EE			_
		4.00 - 4.45	U							4 =
		4.45	D				E_=_			
		4.50 4.50 - 5.00	ES B				<u></u>			_
		5.00	D							5 —
		5.00		N=14 (2,2/3,3,4,4))		<u> </u>			
		5.50 - 6.00	В				<u> </u>			_
							E_=_=			-
		6.00 - 6.45	U				E-=			6 -
		6.45	D							=
		6.50 - 7.00	В				EE			-
		7.00	D							7 -
		7.00		N=16 (2,3/3,3,4,6))		E-E-E			
		7.50 - 8.00	В							-
										_
		8.00 - 8.45	U				EE			8 _
		8.45	D							-
		8.50 - 9.00	В		8.60	26.21		Stiff grey CLAY.		-
		9.00	D							9 —
		9.00		N=21 (3,3/4,6,5,6))					
		9.50 - 10.00	В							
Y//>\\//		10.00	ES					Continued on next sheet		10 -
Rema	rks									

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. PID results: 0.50m - 1.6ppm, all other PID results 0 - 0.2ppm.

<u>G</u>									Borehole N	l o.
	G					Ro	reho	ole Log	BH03	}
GRC	OUNDTE CONSULTING	:CH						510 L09	Sheet 2 of	
Projec	t Name:	: HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530158.87 - 185642.44	Hole Type CP	
Location	on:	LONDON					Level:	34.81	Scale 1:50	
Client:		WATERMA	AN		•		Dates:	01/02/2021 - 02/02/2021	Logged B BM	y
Well	Water		1	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
×///×///	Strikes	Deptil (III)	Туре	Results	(m)	(m)			· 	
		10.00 - 10.45	U				E===1			-
		10.45 10.50 - 11.00	D B							-
		11.00 11.00	D	N=24 (3,5/5,6,6,7)						11 -
		11.50 - 12.00	В							-
		12.00 - 12.45	U				<u> </u>			12 -
		12.30 12.35 - 12.85	D B					Claystone encountered between 12.30m ar	nd 12.50m bgl.	- - -
		13.00 13.00	D	N=25 (5,5/5,6,7,7)						13
		13.50 - 14.00	В							-
		14.00 - 14.45	U							14 -
		14.45 14.50 - 15.00	D B							-
		15.00 15.00 15.00 15.50 - 16.00	D ES B	N=31 (5,7/7,7,8,9)						15
		10.00 - 10.00	Б							16
		16.50 - 16.95	U							-
		16.95 17.00 - 17.50	D B							17
		18.00 18.00	D	N=36 (5,7/7,8,9,12)					18
		18.50 - 19.00	В	(3,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	,					-
										19
		19.50 19.50 - 20.00	В	N=44 (20,5/10,10,11,13)				Claystone encountered between 19.50m ar	nd 19.65m bgl.	
Remai	rke	20.00	ES					Continued on next sheet		20 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. PID results: 0.50m - 1.6ppm, all other PID results 0 - 0.2ppm.

	<u> </u>								Borehole No.
	G					Bo	reho	ole Log	BH03
GRC	UNDTE	CH						3.0 209	Sheet 3 of 4
Droigo	t Name	: HOLLOWA	V DDI		Project No.		Co-ords:	530158.87 - 185642.44	Hole Type
Flojec	l INAITIE	. HOLLOWA	AI FIX	SON	GRO-20291		Co-orus.	330130.07 - 103042.44	СР
Location	on:	LONDON					Level:	34.81	Scale 1:50
Client:		WATERMA	λN				Dates:	01/02/2021 - 02/02/2021	Logged By BM
Well	Water		and	In Situ Testing	Depth	Level	Legend	Stratum Description	
VVCII	Strikes	Dopui (iii)	Туре	Results	(m)	(m)	Legend	Stratum Description	•
		20.00 - 20.50	В						=
]
		21.00 - 21.45	U						21 —
]
		21.45	D						
									22 —
		22.50 22.50	D	N=37 (6,7/7,9,10,1	1)				
		22.50		11-37 (0,777,9,10,1	'/]
		23.00 - 23.50	В						23 —
]
]
		24.00 - 24.45	U						24 —
		24.45	D						=
		24.50 - 25.00	В						
		25.00	ES						25 —
		23.00	LS						25 _
		25.50	D]
		25.50		N=34 (6,7/7,7,8,1	2)				
		26.00 - 26.50	В						26 —
									Ēİ
									4
]
		27.00 - 27.45	U				<u> </u>		27 _
							<u> </u>]
		27.45 27.50 - 28.00	D B				<u> </u>		-]
		27.00 20.00					<u> </u>		
									28 —
									=
		28.50 28.50	D	N=43			<u> </u>		=
				(8,9/9,10,11,13)]
		29.00 - 29.50	В				F_=_=]		29 —
							E_=_=]
							<u> </u>		=
		30.00 20.45							
Remai	·ks	30.00 - 30.45	U					Continued on next sheet	30 —
·······ai									

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. PID results: 0.50m - 1.6ppm, all other PID results 0 - 0.2ppm.

	G					Do	robo		Borehole No.
GRO	OUNDTE	:СН				DU	renc	ole Log	BH03
Projec	t Name:	: HOLLOWA	AY PR		Project No. GRO-20291		Co-ords:	530158.87 - 185642.44	Sheet 4 of 4 Hole Type CP
Locati	on:	LONDON		•			Level:	34.81	Scale 1:50
Client:	:	WATERMA	AN				Dates:	01/02/2021 - 02/02/2021	Logged By BM
14/511	Water	Samples	s and	In Situ Testing	Depth	Level		Ot-t Decemention	
Well	Strikes		Туре	Results	(m)	(m)	Legend	Stratum Description	1
									=
		30.45 30.50 - 31.00	D B						
		00.00	_						-
									31 —
		31.50	D						=
		31.50		N=41 (7,7/9,10,11,1	1)				-
		32.00	ES						32
							E- <u>-</u>		-
									-
							E-E-E		
		33.00 33.00	D	N=42					33 —
				(8,9/10,10,10,12)					=
		33.50 - 34.00	В				<u> </u>		-
							E- <u>-</u>		34 —
									-
		34.50	D				E-E-E		-
		34.50		N=37 (8,8/10,11,3,13)					=
		35.00 - 35.50	В				<u> </u>		35 _
							<u> </u>		=
							E		-
		20.00							-
		36.00 36.00	D	N=46					36 —
		36.50 - 37.00	В	(9,10/10,11,11,14)	'				-
			_						-
							E_=_=		37
									=
		37.50 37.50	D	N=48					
				(10,10/11,11,12,14)				-
		38.00 - 38.50	В						38 —
							F_=_=		-
							E-E-E		=
		39.00	D						39 —
		39.00		N=50 (11,14/50 for 225mm)	r				
		39.50 - 40.00	В	22011111)					-
									=
					40.00	-5.19		End of borehole at 40.00 m	40 -
Rema	rks								

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. PID results: 0.50m - 1.6ppm, all other PID results 0 - 0.2ppm.

									Borehole N	lo.
	6					Bo	reho	ole Log	BH04	,
GRO	OUNDTE	CH					. •	3.0 209	Sheet 1 of	4
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530208.55 - 185611.10	Hole Type CP	9
Locati	on:	LONDON					Level:	34.37	Scale 1:50	
Client	:	WATERMA	AN				Dates:	25/01/2021 - 26/01/2021	Logged B	у
Well	Water	Samples	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVOII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	•		
		0.50 0.50 0.50 - 1.00 1.00 1.00	D ES B D ES		0.30 0.35 0.95	34.07 34.02 33.42		MADE GROUND: Tarmac over rein concrete. MADE GROUND: Pale brown sand to subrounded fine to coarse gravel lithologies including chert and quart MADE GROUND: Dark brown red s slightly cobbly sandy subangular fir gravel of mixed lithologies including concrete and rare ash.	y subangular l of mixed lzite. slightly clayey le to coarse	1 -
		1.20 1.20 1.20 - 1.70	D B	N=6 (1,1/1,1,2,2)				Soft brown CLAY.		-
		2.00 2.00 - 2.45 2.45 2.50 - 3.00	ES U D B					Firm from 2.00m bgl.		2 —
		3.00 3.00 3.00 3.50 - 4.00	D ES B	N=7 (1,1/2,1,2,2)						3 -
		4.00 4.00 - 4.45	ES U					Firm to stiff from 4.00m bgl.		4 =
		4.45 4.50 - 5.00 5.00 5.00 5.00 - 5.45	B ES	N=16 (2,3/3,4,5,4)					5 —
		5.50 - 6.00 6.00 - 6.45	B U							6 —
		6.45 6.50 - 7.00	D B							- - - -
		7.00 7.00 - 7.45	D	N=20 (3,3/4,5,6,5)					7 —
		7.50 - 8.00	В							
		8.00 - 8.45	U							8 -
		8.45 8.50 - 9.00	D B	N=04 /0 4/5 0 0 7						
		9.00 9.00 - 9.45 9.50 - 10.00	D B	N=24 (3,4/5,6,6,7	'					9 —
		10.00	ES					- · · ·		10 —
Rema	rks	-						Continued on next sheet		\Box

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH04 Sheet 2 of 4
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530208.55 - 185611.10	Hole Type CP
Locati	on:	LONDON		1			Level:	34.37	Scale 1:50
Client		WATERMA	AN				Dates:	25/01/2021 - 26/01/2021	Logged By BM
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1
		10.00 - 10.45	U	results	10.20	24.17			
		10.45 10.50 - 11.00	D B		10.20	24.17		Stiff grey CLAY.	
		11.00 11.00 - 11.45	D	N=27 (3,4/5,7,7,8)					11
		11.50 - 12.00	В						
		12.00 - 12.45	U						12
		12.45 12.50 - 13.00	D B						
		13.00 13.00 - 13.45	D	N=28 (4,4/6,7,7,8))				13
		13.50 - 14.00	В						
		14.00 - 14.45	U						14
		14.45 14.50 - 15.00	D B				<u> </u>		
		15.00 15.00 15.00 - 15.45	ES D	N=30 (4,4/6,8,8,8)					15
		16.00 - 16.50	В						16
		16.50 - 16.95	U						
		16.95	D						17
		17.50 - 18.00	В						
		18.00 18.00 - 18.45	D	N=34 (4,5/7,9,9,9)					18
		19.00 - 19.50	В						19
		19.50 - 19.95	U						
Rema	wise.	19.95	D					Continued on next sheet	20

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

	G								Borehole No.
GRO	DUNDTE	сн				Bo	reho	ole Log	BH04
O/ (C	CONSULTING				Dunin at Nin		1		Sheet 3 of 4
Projec	t Name:	: HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530208.55 - 185611.10	Hole Type CP
Locati	on:	LONDON					Level:	34.37	Scale 1:50
Client		WATERMA	AN				Dates:	25/01/2021 - 26/01/2021	Logged By BM
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
	Ou moo	Depth (m) 20.00	Type ES	Results	()	()			
		20.50 - 21.00	В						
		21.00 21.00	D	N=36 (5,6/7,9,10,10	2)				21 -
		21.00		14-30 (3,0//,3,10,10					
		22.00	В						22 -
		22.50 - 22.95	U						
		22.95	D						23 -
		23.50 - 24.00	В						
		24.00 24.00	D	N=38 (6,6/8,9,9,12					24 -
		25.00 25.00 25.00 - 25.50	ES ES B						25 ·
		25.50 - 25.95 25.95	U D						
		26.50 - 27.00	В						26
		27.00 27.00	D	N=37 (7,8/8,8,10,1°	1)			Claystone encountered from 26.60m to 26.8	20m bgl.
				- (-,,-,0,,-0,,1					
		28.00	В						28 -
		28.50 - 28.95	U						
		28.85	D						29 -
		29.50 - 30.00	В						
Rema	ml ca	30.00	D					Continued on next sheet	30

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	S UNDTE	CH				Borehole No. BH04			
	t Name:		Y PRI		Project No.		Co-ords:	ole Log 530208.55 - 185611.10	Sheet 4 of 4 Hole Type
Locatio		LONDON		C	SRO-20291		Level:	34.37	CP Scale 1:50
Client:		WATERMA	۸N				Dates:	25/01/2021 - 26/01/2021	Logged By BM
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description	
	Suikes	Depth (m) 30.00	Type ES	Results	(m)	(m)			
		30.00 30.00	ES	N=41 (8,8/9,10,10,12)					
		31.00 - 31.50	В						31 -
		31.50 - 31.95	U						
		31.95	D						32 -
		32.50	В						
		33.00 33.00	D	N=45 (8,9/10,10,12,13)					33 -
		34.00 - 34.50	В						34 -
		34.50 - 34.95	U						
		34.85 35.00 35.00	D ES ES						35 -
		35.50 - 36.00	В						
		36.00 36.00	D	N=50 (9,9/11,12,12,15)					36 -
		37.00	В						37
		37.50 - 37.95	U						
		37.85	D						38 -
		38.50 - 39.00	В						
		39.00 39.00	D	N=50 (10,14/50 for 220mm)					39 -
		40.00	ES		40.00	-5.63		End of borehole at 40.00 m	

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Bo	reho	ole Log	Borehole N BH05 Sheet 1 of	4
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530064.21 - 185651.80	Hole Type CP)
Locati	on:	LONDON					Level:	35.73	Scale 1:50	
Client		WATERMA	ΔN				Dates:	03/02/2021 - 04/02/2021	Logged B	У
Well	Water Strikes	-		n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	า	
		Deptii (iii)	Туре	Results				MADE GROUND: Tarmac over con	crete.	_
		0.50 0.50	B ES		0.25 0.40	35.48 35.33		MADE GROUND: Orange brown si very clayey subangular to subround to coarse gravel of chert. Soft brown CLAY.	ightly sandy ded medium	
		1.00 1.20 1.20	ES B D					SOTT Drown CLAY.		1 -
		1.20 1.70	ES	N=6 (1,1/2,1,1,2))					_
		2.00 - 2.45	U							2 -
		2.45 2.50 2.50	D B ES							- - -
		3.00 3.00	D	N=10 (2,2/1,2,3,4)			Soft to firm from 3.00m bgl.		3 -
		3.50 3.50	B ES					Firm from 3.50m bgl.		-
		4.00 - 4.45	U							4 =
		4.45 4.50 4.50	D B ES							- - -
		5.00 5.00	D	N=15 (2,3/3,4,4,4)					5 -
		5.50 - 6.00	В							-
		6.00 - 6.45	U							6 —
		6.45 6.50 - 7.00	D B							- - - -
		7.00 7.00	D	N=21 (3,4/5,5,5,6)					7 -
		7.50 - 8.00	В							-
		8.00 - 8.45	U							8 -
		8.45 8.50 - 9.00	D B							-
		9.00 9.00	D	N=23 (3,5/5,5,6,7)					9 -
		9.50 - 10.00	В		9.60	26.13		Stiff grey CLAY.		 - - -
Rema		10.00	ES					Continued on next sheet		10 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m, 31.00 plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH05 Sheet 2 of 4	
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530064.21 - 185651.80	Hole Type CP	
Locati	on:	LONDON					Level:	35.73	Scale 1:50	
Client		WATERMA	AN				Dates:	03/02/2021 - 04/02/2021	Logged By BM	
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
		10.00 - 10.45	U	resuits		, ,				_
		10.45 10.50 - 11.00	D B							
		11.00 11.00	D	N=31 (5,6/7,7,8,9)					1	11 — - -
		11.50 - 12.00 12.00 - 12.45	B						11	- - - 2 —
		12.45 12.50 - 13.00	D B						ľ	-
		13.00 13.00	D	N=26 (4,3/4,6,7,9)					1:	3 —
		13.50 - 14.00	В							-
		14.00 - 14.45	U						14	4 =
		14.45 14.50 - 15.00	D B							
		15.00 15.00 15.00 15.50 - 16.00	D ES B	N=35 (5,5/7,8,10,10)				1:	5 -
									11	6 —
		16.50 - 16.95 16.95	U D						41	- - - 7 —
		17.00 - 17.50	В						ľ	,
		18.00 18.00	D	N=33 (6,5/7,8,8,10)					1	8 —
		18.50 - 19.00	В							
									19	9 -
		19.50 - 19.95 19.95	U D							
Rema	rke	.0.00						Continued on next sheet	2	20 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m, 31.00 plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

	G					B ₀	robo		Borehole No BH05	
GRO	DUNDTE	CH .				DU	renc	ole Log	Sheet 3 of	
Projec	t Name	: HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530064.21 - 185651.80	Hole Type CP	
Locati	on:	LONDON					Level:	35.73	Scale 1:50	
Client		WATERMA	ΑN				Dates:	03/02/2021 - 04/02/2021	Logged By BM	,
Well	Water Strikes		Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		20.50 - 21.00	В							-
										21 —
		21.50	D							-
		21.50		N=37 (6,6/7,8,10,12	2)					- - -
		22.00 22.00 - 22.50	ES B							22 -
										-
		23.00 - 23.45	U							23 —
		23.45	D							-
		23.50 - 24.00	В							-
										24 -
		24.50	D							-
		24.50 25.00 - 25.50	В	N=33 (6,7/6,7,9,11))					
		25.00 - 25.50							•	25 - -
										-
		26.00 26.00 - 26.45	ES U							26 –
		26.45	D							
		26.50 - 27.00	В							
										27 — - -
		27.50 27.50	D	N=35 (6,7/7,8,9,11))					-
		28.00 - 28.50	В							28 —
										-
										-
		29.00 - 29.45 29.15 29.25 - 29.95	U D B							29 -
		20.00								-
								Continued on next sheet		30 —
Rema	rks	I.		ı		I.	1	Containded on Hoxt Silber		

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m, 31.00 plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

	DUNDTE CONSULTING		V DDI		Project No.	Во	reho	ole Log 530064.21 - 185651.80	Borehole No. BH05 Sheet 4 of 4 Hole Type
Locati		LONDON	AI FINI	SON	GRO-20291		Level:	35.73	CP Scale
Client:		WATERMA	AN				Dates:	03/02/2021 - 04/02/2021	1:50 Logged By
Well	Water	Samples		n Situ Testing	Depth	Level	Legend	Stratum Description	BM
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Otratum Description	
.03 0.0		30.50 30.50	D	N=40					
		31.00 - 31.50	В	(7,8/9,10,10,11)					31 —
		31.50	ES						-
		32.00 - 32.45	U						32 —
		32.45 32.50 - 33.00	D B						
		33.50 33.50	D	N=46					33 -
		34.00 - 34.50	В	(8,8/9,11,13,13)					34 -
									35 —
		35.50 - 35.95	U						<u>-</u> -
		35.90 36.00 - 36.50	D B						36 —
		37.00 37.00	D	N=49					37
		37.50 - 38.00	В	(9,10/10,12,13,14)				
									38 —
		38.50 - 38.95	U						
		38.95 39.00 - 39.50	D B						39 —
		39.50 39.50 39.90	D D	N=50 (10,12/50 fo 225mm)					
Rema	<u> </u>	J9.9U	ן ט		40.00	-4.27		End of borehole at 40.00 m	40 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m, 31.00 plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

	G					D -	. ما م		Borehole N	
GRO	DUNDTE	СН				RO	rend	ole Log	BH06	
	CONSULTING			0011	Project No.			500004.00 405000.50	Sheet 1 of Hole Typ	
Projec	t Name:	HOLLOWA	AY PRI		GRO-20291		Co-ords:	530084.36 - 185630.52	CP	
Locati	on:	LONDON					Level:	35.59	Scale 1:50	
Client	:	WATERMA	AN				Dates:	18/01/2021 - 19/01/2021	Logged B BM	Ву
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
	•	0.50 0.50	D ES	results	0.80	34.79		MADE GROUND: Grass over brow sandy gravelly clay topsoil. Gravel i subrounded fine to coarse of mixed including brick and chert. Firm brown mottled grey CLAY.	s angular to	
		1.00 1.00 1.00 1.20 1.20 1.50	B D ES D	N=13 (2,2/2,3,4,4)			Firm to stiff from 1.80m bgl.		1
		2.00 2.00 2.00 - 2.45 2.50	B ES U D							2
		3.00 3.00 3.00 3.00 3.50	B D ES D	N=16 (2,3/3,4,4,5)					3 —
[44] [41.		4.00 4.00 4.00 4.00 - 4.45	B D ES U					Occasional calcite crystals from 4.5m bgl.		4 -
		5.00 5.00 5.00 5.00 5.50	B D ES	N=20 (4,4/5,4,5,6)					5 -
		6.00 6.00 - 6.45 6.50	B U D							6 -
		7.00 7.00	В	N=21 (4,4/5,5,6,5)					7 —
		7.50	D							-
		8.00 8.00 - 8.45	B U							8 -
		8.50 9.00	D B		9.00	26.59		Stiff grey CLAY.		- - - 9 -
		9.00 9.50	D	N=25 (4,5/5,6,7,7)			Guil grey OLAT.		
Rema		10.00	В					Continued on next sheet		10 —

Remarks
1. Hand dug pit to 1.20m bgl. 2. Seepage at 0.40m bgl. 3. Chiselling from 12.70m - 13.00m (60 mins) and 18.60m -18.80m (60 mins). 4. Installation to 8.00m bgl, 5.00m plan pipe and 3.00m slotted pipe. 5. All PID results 0 - 0.2ppm.

G									Borehole N	lo.
	6					Bo	reho	ole Log	ВН06	;
GRC	OUNDTE CONSULTING	CH					. 0110	510 L0g	Sheet 2 of	2
Projec	t Name:	: HOLLOWA	Y PRI		roject No. GRO-20291		Co-ords:	530084.36 - 185630.52	Hole Type	
Location	on:	LONDON					Level:	35.59	Scale 1:50	
Client:		WATERMA	λN				Dates:	18/01/2021 - 19/01/2021	Logged B BM	у
Well	Water	Samples	and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
V//XV//	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	Cuatam Becompact	•	
		10.00 10.00 - 10.45	ES U							-
		10.50	D							- -
		11.00 11.00	В	N=28 (4,5/6,7,7,8)						11 -
		11.50	D							- - -
		12.00 12.00 - 12.45	B U							12 -
		12.50	D							-
		12.70	D					Weak grey distinctly weathered claystone b	etween 12.7m	-
		13.00	В					and 13.0m bgl.		13 —
		13.00		N=28 (5,5/6,7,7,8)						-
										_
										-
		14.00 - 14.45	U							14 -
		14.50	D							-
		14.50								-
		15.00	В							15 —
		15.00 15.00	ES	N=30 (5,6/6,7,8,9)						
		15.50	D	14-00 (0,0/0,7,0,0)						-
										-
		16.00	В							16
										-
		16.50 - 16.95	U							-
										-
		17.00 17.00	B D							17 —
										-
		17.50	D							-
		18.00	В							18 —
		18.00		N=30 (3,3/4,5,10,11						10 -
		18.50	D							_
		18.60	D					Weak grey distinctly weathered claystone b and 18.8m bgl.	etween 18.6m	-
		19.00	В					<u> </u>		19 -
										-
		19.50 - 19.95	U							-
		20.00	ES		20.00	15.59				20 =
Remai	rko	20.00			20.00	10.09		End of borehole at 20.00 m	1	20 —

Remarks
1. Hand dug pit to 1.20m bgl. 2. Seepage at 0.40m bgl. 3. Chiselling from 12.70m - 13.00m (60 mins) and 18.60m -18.80m (60 mins). 4. Installation to 8.00m bgl, 5.00m plan pipe and 3.00m slotted pipe. 5. All PID results 0 - 0.2ppm.

G						Borehole N	lo.			
	G					Bo	reho	ole Log	BH07	J
GRO	OUNDTE	CH					. •	5.5 = 59	Sheet 1 of	2
Projec	t Name:	HOLLOWA	AY PRI		Project No.		Co-ords:	530084.17 - 185580.77	Hole Type	Э
		110220111			GRO-20291		00 0140.	10000.77	CP Scale	
Locati	on:	LONDON					Level:	36.47	1:50	
Client:		WATERMA	AN				Dates:	19/01/2021 - 20/01/2021	Logged B	у
				n Situ Testing					BM	
Well	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	I	
		Deptil (III)	Type	Results	, ,	. ,		MADE GROUND: Tarmac over cond	crete.	_
					0.30	36.17		MADE GROUND: Brown medium to	coarse sand	- =
		0.50 0.50	D ES		0.60	35.87		and angular to subrounded medium gravel of mixed lithologies including	to coarse	, =
								quartzite and concrete. MADE GROUND: Brown red cobbly	/	
		1.00 1.00	D ES					angular to subrounded medium to c		1 —
		1.20 1.20	D	N=29 (5,6/6,7,8,8	1.40	35.07		of brick, concrete and chert. Firm brown mottled grey CLAY.		
		1.50 1.50	B ES	(-,-,-,-,-	'			Tim Brown motaca grey OLAT.		
		2.00	ES							2 —
		2.00 - 2.45	U				F	Firm to stiff and dark brown from 2.00m bgl.		
		2.50	В							_
		3.00	D							3 _
		3.00 3.00	ES	N=14 (2,2/3,3,4,4	4)		E- <u>-</u>			=
		3.50	В				E===			_
										_
		4.00 4.00 - 4.45	ES U							4 =
							<u> </u>			
		4.50	В				<u> </u>			_
		5.00	В							_
		5.00	D					Occasional calcite crystals from 5.00m bgl.		5 —
		5.00 5.00	ES	N=20 (2,3/4,5,5,6	s)		F			_
							E===			-
		6.00 - 6.45	U							6 —
		6.50	В				F_=_=			
							E- <u>-</u> -			
		7.00	D		.					7 –
		7.00		N=21 (4,5/5,5,6,5	5)					_
							E			_
		8.00 - 8.45	U							8 —
							<u> </u>			
		8.50	В							
		0.00					<u> </u>			
		9.00 9.00	B D				E-E-E			9 —
		9.00		N=24 (4,4/5,6,6,7	9.50	26.97				
					9.50	20.97		Stiff grey CLAY.		
		10.00	ES							10 —
Rema	ll rks							Continued on next sheet		

Remarks
1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 13.10m - 13.40m (60 mins). 4. Backfilled with arisings and bentonite. 5. All PID results 0 - 0.2ppm.

	<u></u>								Borehole N	No.
	G					Bo	reho	ole Log	BH07	,
GRO	OUNDTE CONSULTING	:СН					. •		Sheet 2 of	f 2
Projec	t Name	: HOLLOWA	Y PRI		Project No. SRO-20291		Co-ords:	530084.17 - 185580.77	Hole Typ	е
Locati	on:	LONDON					Level:	36.47	Scale 1:50	
Client:		WATERMA	AN				Dates:	19/01/2021 - 20/01/2021	Logged B BM	Зу
Well	Water		and l	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
VVCII	Strikes	Deptil (III)	Туре	Results	(m)	(m)	Legend	Ottatum Description		
		10.00 - 10.45	U							
										_
										_
		11.00	D							11 -
		11.00		N=28 (5,5/6,6,7,9)						
		11.50	В				F_=_=			_
		12.00 - 12.45	U				E-E-E			12 -
		12.50	В							-
]
		13.00	D				<u> </u>	Weak grey distinctly weathered claystone b	etween 13.0m	13 —
		13.00		N=24 (4,5/6,6,5,7)				and 13.3m bgl.]
		13.50	В							-
							<u> </u>]
		14.00 - 14.45	U							14 —
		14.50	В				E			-
		15.00	D							15 —
		15.00 15.00	ES	N=29 (5,6/6,7,8,8)						
		15.50	В	(3,0,0,1,0,0,						_
										16 —
							F_=_=			
										-
							F			
		17.00	В				E===			17 -
		17.00 - 17.45	U]
]
		18.00	D							18 —
		18.00		N=33 (6,7/8,8,9,8)]
		18.50	В							
										19 -
		19.50	В]
		19.50 - 19.95	Ū				E			=
		20.00	ES		20.00	16.47	F	End of borehole at 20.00 m		20 —
Rema	rks							Life of potentie at 20.00 ff		

Remarks
1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 13.10m - 13.40m (60 mins). 4. Backfilled with arisings and bentonite. 5. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH08 Sheet 1 of	2
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530170.69 - 485598.60	Hole Type CP	e
Locati	on:	LONDON					Level:	34.94	Scale 1:50	
Client:		WATERMA	AN				Dates:	22/01/2021 - 22/01/2021	Logged By BM	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Otrinos	Depth (m)	Туре	Results	(''')	(111)		MADE GROUND: Tarmac over reint	forced	_
		0.50 0.50 1.00 1.00 1.20 1.20 1.20 - 1.70	D ES B D ES D B	N=9 (1,1/2,2,2,3)	0.35	34.59 34.34		concrete. MADE GROUND: Soft brown slightle clay. Gravel is subangular fine to comixed lithologies including quartzite and rare ash. Soft to firm brown CLAY. Occasional subrounded medium gravel of common and 1.30m bgl.	arse of , chert, brick	1
		2.00 2.00 - 2.45 2.50 2.50 - 3.00	ES U D B							2
		3.00 3.00 3.00 3.00 - 3.50 3.50	ES B D	N=12 (2,3/2,3,3,4))					3 —
		4.00 4.00 - 4.45 4.45 4.50 - 5.00	ES U D B							4
		5.00 5.00 5.00 - 5.45 5.00 - 5.50	ES D B	N=16 (2,2/3,4,4,5)			Firm to stiff from 5.00m bgl.		5 —
		6.45	U							6 -
		7.00 7.00	B D	N=22 (3,4/5,6,5,6)					7 —
		7.50 - 8.00 8.00 - 8.45	В							8 —
		8.45 8.50 - 9.00	D B							
		9.00 9.00 9.50 - 10.00	D B	N=23 (4,5/5,5,6,7))					9 -
Remai		10.00	ES		9.80	25.14		Firm to stiff grey CLAY. Continued on next sheet		10 —

Remarks

1. Hand dug to pit 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00m plain pipe and 3.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

									Borehole N	lo.
CDOUNDTECH						BH08				
GROUNDTECH CONSULTING								ole Log	Sheet 2 of 2	
					Project No. GRO-20291		Co-ords:	530170.69 - 485598.60	Hole Type CP	
Location: LONDON					Level: 34.94		34.94	Scale 1:50		
Client:		WATERMA	AN			Dates: 22/01/2021 - 22/01/2021			Logged By BM	у
	Water	Samples and In Situ Tes		n Situ Testing	Depth	Level	†		1	
Well	Strikes	_	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
							F- <u>-</u>			
		10.35 10.50 - 10.95	D U				E-E			
		10.50 - 10.93	В				F	Stiff from 10.50m bgl.		_
		11.00	D				F			44 _
		11.00 11.00	ן ט ן	N=29 (4,5/6,7,8,8)			F			11 -
			_	•			F			_
		11.50 - 12.00	В							-
							<u> </u>			12 -
							<u> </u>			-
		12.45 12.50 - 13.00	D B				L			-
		12.50 - 13.00					L- <u>-</u>			-
		13.00	D				L- <u>-</u>			13 -
		13.00	-	N=29 (5,5/6,7,8,8)			F			-
		10.50 44.00					F_=_=			-
		13.50 - 14.00	В							-
							<u> </u>			
		14.00 - 14.45	U				F==1			14 _
							L1			-
		14.45	D				F1			_
		14.50 - 15.00	В				F			-
		15.00	D				F			15 -
		15.00	ES				<u> </u>			-
		15.00	_	N=32 (5,5/7,8,9,8)			L			-
		15.50 - 16.00	В				L- <u>-</u>			-
							L			-
							F			16
							F_=_=			-
		16.50 - 16.95	U							-
							= = =			-
		16.95	D				E==1			
		10.00					L1			17 —
							F1			-
		17.50 - 18.00	В				[-
							F			
		18.00	D							18 -
		18.00		N=37 (6,6/8,9,10,10))		L			-
							L- <u>-</u>			_
							L- <u>-</u>			-
		10.00 10.50	_D				<u> </u>			1,
		19.00 - 19.50	В				F			19 -
							F_=_=			
		19.50 - 19.95	U							-
		40.00								-
	1	19.90 19.90	D ES		20.00	14.94		End of borehole at 20.00 m		20 -
Remar	rks									

Remarks
1. Hand dug to pit 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00m plain pipe and 3.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

					Borehole No.					
CDOLINDTECH						ВН09				
GROUNDTECH CONSULTING			Borehole Log				Sheet 1 of 5			
Project Name: HOLLOWAY PRISON			Project No. GRO-20291		Co-ords:	530116.50 - 185560.68	Hole Type CP			
Locati	on:	LONDON						35.93	Scale 1:50	
Client:		WATERMAN					Dates:	27/01/2021 - 29/01/2021	Logged By BM	
Well	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Brown slightly gr		
		0.50 0.50 - 1.00	ES B		0.20	35.73		clay topsoil. Gravel is subangular to fine to coarse of mixed lithologies in MADE GROUND: Brown slightly cogravelly sand. Gravel is angular to fine to coarse of mixed lithologies in	o subrounded ncluding brick. obbly clayey subrounded	-
		1.00	ES		,			quartzite, chert, ash and rare concr are subangular of brick.	ete. Cobbles	1 -
		1.20 1.20 - 1.60	В	N=5 (1,1/1,2,1,1)			Slight organic / hydrocarbon odour betweel 0.60m bgl.	n 0.20m and	
		1.60	ES		1.80	34.13				
		1.90 2.00	ES D		2 10	33.83		MADE GROUND: Soft brown sand clay. Gravel is subangular fine to co mixed lithologies including chert, br	parse of	2 =
		2.00 2.10 - 2.60	В	N=5 (2,1/1,1,2,1)			quartzite. Soft to firm brown CLAY.	ick and	
								COLLO IIIII BIOWII CEAT.		
		2.90 3.00 3.00	ES D	N=7 (2,1/1,2,2,2)			Firm from 3.00m bgl.		3 -
		3.50 - 4.00	В							
		4.00	ES							4 —
		4.00 - 4.45	U							
		4.45 4.50 - 5.00	D B							-
		5.00 5.00 5.00	D ES	N=13 (2,2/3,2,4,4	1)					5 -
		5.50 - 6.00	В							=
		6.00 6.00 - 6.45	ES U							6 -
		6.45 6.50 - 7.00	D B							
		7.00 7.00	D ES	N=40 /2 4/4 4 5 6	,,					7 -
		7.00 7.50 - 8.00	В	N=19 (3,4/4,4,5,6)	''		E-E			
		8.00 8.00 - 8.45	ES U							8 -
		8.45 8.50 - 9.00	D B							
				1	8.80	27.13		Stiff grey CLAY with occasional bands claystone.	nds of	
		9.00 9.00	ES	N=28 (10,15/10,7,5,6)						9 —
		9.00 - 9.50	В	(10,15/10,7,5,6)						
		9.80 10.00	D D					_ _ 		10 —
Domo	Ļ	10.00						Continued on next sheet		

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.9ppm, 1.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

GROUNDTECH CONSULTING					Borehole Log				Borehole No. BH09 Sheet 2 of 5	
			Project No. GRO-20291		Co-ords:	530116.50 - 185560.68	Hole Type CP			
Location: LONDON						Level:	35.93	Scale 1:50		
Client: WATERMAN						Dates:	27/01/2021 - 29/01/2021	Logged By BM		
Well	Water Strikes		and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
		10.00	турс	N=25 (5,5/6,5,7,7)		, ,				
		10.50 - 11.00	В							
		11.00 11.00 - 11.45	ES U							11 — - -
		11.45 11.50 - 12.00	D B							-
		12.00 12.00	D	N=27 (3,3/4,6,8,9))		<u></u>		1	12 -
		12.50 - 13.00	В							-
		13.00 - 13.45	U						1	13 -
		13.45 13.50 - 14.00	D B							
		14.00 14.00	D	N=28 (4,5/6,7,6,9))				1	14 — -
		14.50 - 15.00	В							-
		15.00 15.00 - 15.45	ES U						1	15 — - -
		15.45 15.50 - 16.00	D B							-
									1	16 - -
		16.50 16.50	D	N=25 (4,5/7,7,6,5))					-
		17.00 - 17.50	В						1	17 — - - - - -
		18.00 - 18.45	U						1	- 18 —
		18.45	D							-
		19.00 - 19.50	В						1	19 —
		19.50	ES							
Rema		20.00	D					Continued on next sheet	2	20 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.9ppm, 1.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH09 Sheet 3 of 5
Projec	ct Name:	: HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530116.50 - 185560.68	Hole Type CP
Locati	on:	LONDON		<u>'</u>			Level:	35.93	Scale 1:50
Client	:	WATERMA	٨N				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		Depth (m) 20.00	Туре	Results N=32 (5,6/7,7,8,10		()			_
		20.50 - 21.00	В	(2,3,.,3,	,				
									21 -
		21.50 - 21.95	U						
		21.95 22.00 - 22.50	D B						22 -
		23.00 23.00	D	N=37 (4,6/8,9,10,10	0)				23 —
		23.50 - 24.00 23.50 - 33.00	B B						
									24 —
		24.50 - 24.95	U						
		24.85 25.00 - 25.50	D B						25 —
		26.00 26.00	D	N=37 (5,7/6,10,10,11)					26 —
		26.50 26.50 - 27.00	ES B	(6,176,16,16,11)					
		27.50 27.05							27 —
		27.50 - 27.95	U						-
		27.90 28.00 - 28.50	D B						28 —
		29.00 29.00	D	N=40 (7,7/8,10,11,1	1)				29
Rema		30.00	ES					Continued on next sheet	30

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.9ppm, 1.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH09 Sheet 4 of 5
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530116.50 - 185560.68	Hole Type CP
Locati	on:	LONDON					Level:	35.93	Scale 1:50
Client:		WATERMA	AN				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water Strikes	-	and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n
		Deptil (III)	туре	Nesuits		,			
		30.50 - 30.95	U						
		30.90 31.00 - 31.50	D B						31 -
							<u> </u>		
		32.00 32.00	D	N=39			<u> </u>		32 -
		32.00		(7,7/8,10,10,11)			<u> </u>		
							<u> </u>		33 -
		33.50 - 33.95	U						
		33.85 34.00 - 34.50	D B				<u> </u>		34 -
							<u> </u>		
		25.00	5						0.5
		35.00 35.00 35.00	D ES	N=44 (8,8/10,11,11,12)					35 -
		35.50 - 36.00	В	(0,0/10,11,11,12)					
									36 -
		36.50 36.50	D	N=47 (8,8/9,12,12,14)					
		37.00 - 37.50	В						37 -
		38.00 38.00	D	N=47					38 -
				(7,9/9,10,13,15)					
									39 -
		39.50 39.50	B D						
		39.50	ES		40.00	-4.07	<u> </u>	Continued on next sheet	40 -

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.9ppm, 1.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

GRO	GROUNDTECH CONSULTING Project Name: HOLLOWAY PRISON					Во	reho	ole Log	Borehole No. BH09 Sheet 5 of 5
Projec	ct Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530116.50 - 185560.68	Hole Type CP
Locati	ion:	LONDON			l		Level:	35.93	Scale 1:50
Client	:	WATERMA	AN				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water Strikes	Sample: Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
		39.50	Турс	N=50				End of borehole at 40.00 r	m e
				(10,11/13,14,16,7	7)				
									41 -
									42 -
									43 -
									44 -
									45 -
									46
									47
									48 -
									49 -
									50
Rema	rke								30

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.9ppm, 1.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

GROUNDTECH CONSULTING						Bo	reho	ole Log	Borehole N	
GRO		CH						olo Log	Sheet 1 of	
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530169.11 - 185526.88	Hole Typ CP	е
Locati	on:	LONDON			GI(O-20291		Level:	37.00	Scale	
Client:		WATERMA	AN				Dates:	19/01/2021 - 22/01/2021	1:50 Logged B	у
	Water			n Situ Testing	Depth	Level			BM	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
								MADE GROUND: Tarmac over rein concrete.	forced	-
		0.50	ES D		0.40	36.60		MADE GROUND: Soft to firm dark sandy slightly cobbly gravelly clay. subangular fine to coarse of mixed including brick, concrete, ash and c	Gravel is lithologies hert. Cobbles	1 —
		1.00 1.20	ES D		1.40	05.00		are subangular to subrounded of br	ICK.	-
		1.20 1.50 1.50 - 2.00	D B	N=6 (1,1/1,1,2,2)	1.40	35.60		Firm brown CLAY.		
		2.00 2.00 - 2.45	ES U							2 -
		2.50 - 3.00	В							
		3.00 3.00 3.00	D ES	N=19 (3,3/3,4,5,7)			Firm to stiff from 3.00m bgl.		3 —
		3.50 3.50 - 4.00	D B							
		4.00 4.00 - 4.45	ES U							4 =
		4.50 - 5.00	В							
		5.00 5.00 5.00 5.50	D ES D	N=22 (3,3/4,5,5,8)					5 —
		5.50 - 6.00	В							
		6.00 - 6.45	U							6 —
		6.50 - 7.00	В							
		7.00 7.00	D	N=22 (3,4/4,6,6,6)					7 -
		7.50 7.50 - 8.00	D B							
		8.00 - 8.45	U							8 -
		8.45 8.50 - 9.00	D B							-
		9.00 9.00	D	N=29 (4,5/5,7,8,9)					9 -
		9.50 9.50 - 10.00	D B		9.70	27.30		Stiff grey CLAY.		
		10.00	ES				<u> </u>	Continued on next sheet		10 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No Groundwater encountered. 3. Chiselling between 19.20m - 19.40m (30 mins), between 26.40m - 26.70m (60 mins) and between 28.00m - 28.90m (120 mins). 4. Installation to 35m bgl, 31m plain pipe and 4m slotted pipe. 5. All PID results 0 - 0.2ppm.

©									Borehole N	
GRO	DUNDTE	CH				Bo	reho	ole Log	BH10	
	CONSULTING			F	Project No.				Sheet 2 of Hole Type	
Projed	t Name:	HOLLOWA	AY PRI		GRO-20291		Co-ords:	530169.11 - 185526.88	CP	5
Locati	on:	LONDON					Level:	37.00	Scale 1:50	
Client	:	WATERMA	AN				Dates:	19/01/2021 - 22/01/2021	Logged B BM	У
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		10.00 - 10.45	U	ivesuits		,				_
		10.45 10.50 - 11.00	D B							- - - - -
		11.00 11.00	D	N=30 (5,5/5,7,9,9)						11 -
		11.50 11.50 - 12.00	D B							 - -
		12.00 - 12.45	U					Occasional thin (<0.1m) bands of Claystone bgl.	e from 12.00m	12 -
		12.45 12.50 - 13.00	D B							-
		13.00 13.00	D	N=36 (6,6/7,7,9,13)					13 -
		13.50 13.50 - 14.00	D B							-
		14.00 - 14.45	U							14 -
		14.45 - 14.50 14.50 - 15.00	D B							-
		15.00 15.00 15.00	D ES	N=32 (7,7/7,7,9,9)						15 —
		15.50 15.50 - 16.00	D B							-
		16.00 - 16.50	В							16 —
		16.50 - 16.95	U							-
		17.00	D							17 -
		17.50 17.50 - 18.00	D B							-
		18.00 18.00	D	N=31 (6,7/7,7,7,10)					18 -
		18.50 18.50 - 19.00	D B							-
		19.00 19.00 - 19.50	D B					Band of Claystone between 19.20m and 19	.40m bgl.	19 -
		19.50 - 19.95	U						J	
	rks	20.00	D				<u> </u>	Continued on next sheet		20 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No Groundwater encountered. 3. Chiselling between 19.20m - 19.40m (30 mins), between 26.40m - 26.70m (60 mins) and between 28.00m - 28.90m (120 mins). 4. Installation to 35m bgl, 31m plain pipe and 4m slotted pipe. 5. All PID results 0 - 0.2ppm.

									Borehole N	lo.
CD/	S	CU				Bo	reho	ole Log	BH10	1
GRO	OUNDTE CONSULTING	CH							Sheet 3 of	4
Projec	t Name	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530169.11 - 185526.88	Hole Type CP	Э
Locati	on:	LONDON					Level:	37.00	Scale 1:50	
Client		WATERMA	AN				Dates:	19/01/2021 - 22/01/2021	Logged B BM	y
Well	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
VVCII	Strikes	Dopui (iii)	Туре	Results	(m)	(m)	Logona	Ottatum Description		
		20.00	ES							=
		20.50 20.50 - 21.00	D B							
		21.00 21.00	D	N=34 (7,7/7,8,8,11	1)					21 -
		21.50 21.50 - 22.00	D B							-
		22.00	D							22 -
		22.50 - 22.95	U							-
		23.00	D							23 —
		23.50 23.50 - 24.00 24.00	D B D							-
		24.00	D	N=39 (7,7/9,9,9,12	2)		<u> </u>			24 -
		24.50 - 25.00	В							-
		25.00	ES							25 —
		25.50 - 26.00	U							-
		26.00	D							26 —
		26.50 26.50 - 27.00	D B					Band of Claystone between 26.40m and 26	.70m bgl.	-
		27.00 27.00	D	N=50 (9,10/10,12,14,14)		<u> </u>			27 —
		27.50 27.50 - 28.00	D B							-
		28.00 28.00	D	N=50 (9,11/50 for 245mm)	-			Band of Claystone between 28.00m and 28	.90m bgl.	28 -
		28.40 28.40	D	N=50 (10,13/50 fo 230mm)	or					-
		29.00	D					1		29 -
		29.50 29.50 - 30.00	D B							-
		30.00	D					Continued on next sheet		30 —
Dama										

Remarks

1. Hand dug pit to 1.20m bgl. 2. No Groundwater encountered. 3. Chiselling between 19.20m - 19.40m (30 mins), between 26.40m - 26.70m (60 mins) and between 28.00m - 28.90m (120 mins). 4. Installation to 35m bgl, 31m plain pipe and 4m slotted pipe. 5. All PID results 0 - 0.2ppm.

GRO	G DUNDTE	СН				Во	reho	ole Log	Borehole No. BH10
Projec	consulting at Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530169.11 - 185526.88	Sheet 4 of 4 Hole Type
Locati		LONDON		<u> </u>	3RO-20291		Level:	37.00	CP Scale 1:50
Client		WATERMA	AN				Dates:	19/01/2021 - 22/01/2021	Logged By BM
Well	Water Strikes	-		In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
	Otrikoo	30.00	Type ES	Results		(111)			
		30.00		N=39 (8,9/9,9,10,11)				
		30.50	D						
		31.00	D						31 -
		31.50 31.50	D	N=41					
		31.50 - 32.00	В	(9,9/10,10,10,11)					
		32.00	D						32 -
		32.50	D						
		32.50 - 33.00	В						
		33.00 33.00	D	N=48 (8,9/11,11,12,14)					33 -
		33.50 33.50 - 34.00	D B	(0,9/11,11,12,14)			<u> </u>		
		34.00	D						34 -
		34.50 34.50	D	N=50			<u></u>		
		34.50 - 35.00 35.00 35.00	B D ES	(9,9/10,12,12,16)			<u> </u>		35 -
		35.00 35.50	D						
		35.50 - 36.00	В						
		36.00 36.00	D	N=50			<u> </u>		36 -
				(10,10/12,12,13,13)				
		36.50 36.50 - 37.00	D B						
		37.00	D						37 -
		37.50 37.50	D	N=50					
		37.50 - 38.00	В	(10,12/12,14,15,9)					20.
		38.00	D						38 -
		38.50 38.50 - 39.00	D B						
		39.00	D						39 -
		39.00		N=50 (13,12/50 for 230mm)					39
		39.50 39.50 - 40.00	D B						
		39.90 40.00	ES D		40.00	-3.00		End of borehole at 40.00 n	_n 40 -

Remarks

1. Hand dug pit to 1.20m bgl. 2. No Groundwater encountered. 3. Chiselling between 19.20m - 19.40m (30 mins), between 26.40m - 26.70m (60 mins) and between 28.00m - 28.90m (120 mins). 4. Installation to 35m bgl, 31m plain pipe and 4m slotted pipe. 5. All PID results 0 - 0.2ppm.

									Borehole N	lo.
	(Ro	reho	ole Log	BH11	
GRO	OUNDTE CONSULTING	CH						510 L0g	Sheet 1 of	3
Projec	t Name:	: HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530009.52 - 185625.75	Hole Type CP	е
Locati	on:	LONDON			3KU-2U281		Level:	38.09	Scale	
Locau	Ori:	LUNDON					Levei.	36.09	1:50 Logged B). _/
Client	:	WATERM.	AN		•		Dates:	11/02/2021 - 12/02/2021	BM	у
Well	Water		1 1	n Situ Testing	Depth	Level	Legend	Stratum Description		
\\/\\\/	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Grass over dark b		
		0.50 0.50 - 1.00	ES B		0.20	37.89		sandy gravelly clay topsoil. Gravel is fine to coarse of mixed lithologies in and chert. MADE GROUND: Soft brown grave	s subangular cluding brick	-
		1.00	ES					Gravel is subangular fine to medium lithologies including brick, chert, qua	of mixed	1 -
		1.20 1.20 - 1.70	В	N=5 (2,2/1,1,2,1)				and rare concrete.		
		1.70	ES		1.75	36.34		Soft to firm brown CLAY.		
		2.00 2.00	D	N=6 (1,1/2,1,2,1)				Solt to limit blown GLAT.		2 -
		2.50 2.50 - 3.00	ES B							- -
		3.00 - 3.45	U							3 -
		3.50 3.50	D ES					Firm from 3.50m bgl.		- - -
		3.50 - 4.00 4.00 4.00	B D	N=11 (2,1/2,3,2,4)			<u> </u>			4 -
		4.50 4.50 - 5.00	ES B	·						- -
		5.00 - 5.45	U							5 -
		5.45 5.50 5.50 - 6.00	D ES B							- - - -
		6.00 6.00	D	N=17 (2,4/3,4,5,5)						6 -
		6.50 - 7.00	В							-
		7.00 - 7.45	U							7 -
		7.45 7.50 - 8.00	D B							-
		8.00 8.00	D	N=23 (4,5/5,6,5,7)						8 -
		8.50 - 9.00	В							-
		9.00 - 9.45 9.00 - 9.50	U B		9.00	29.09		Weak grey distinctly weathered CLA	AYSTONE.	9 -
		10.00	ES							10 -
Rema	rks	10.00						Continued on next sheet		

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

									Borehole N	No.
206	(G)					Bo	reho	ole Log	BH11	i
GRU	OUNDTE	CH					. •	J.5 = 5 5	Sheet 2 of	of 3
Projec	t Name:	: HOLLOWA	Y PRI		roject No. RO-20291		Co-ords:	530009.52 - 185625.75	Hole Type CP	е
Locatio	on:	LONDON					Level:	38.09	Scale 1:50	
Client:		WATERMA	٩N				Dates: 11/02/2021 - 12/02/2021		Logged By BM	
Well	Water	-	s and l	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
VVG.II	Strikes	Deptil (III)	Туре	Results	(m)	(m)	Legend	Ottatum Dosonption		<u> </u>
		10.00 - 10.45	U							-
		10.50 - 11.00	В		10.50	27.59		Firm to stiff grey CLAY with occasio Claystone.	nal bands of	-
		11.00 11.00	D	N=28 (6,6/6,7,7,8)						11 -
		11.50 - 12.00	В							-
		12.00 12.00 - 12.50	В	N=34 (17,8/8,8,8,10)	'			Claystone encountered between 12.00m an	nd 12.40m bgl.	12 -
								1		-
		13.00 - 13.45								13 -
		13.45 13.50 - 14.00	D B							-
		14.00 14.00	D	N=33 (6,6/7,8,8,10)						14
		14.50 - 15.00	В							
		15.00 15.00 - 15.45	ES U							15 -
		15.45 15.50 - 16.00	D B							-
										16 -
		16.50 16.50	D	N=36 (8,7/8,8,9,11)						-
		17.00 - 17.50	В							17 -
		17.50 17.50	D	N=36 (6,8/8,8,9,11)						10 -
		18.50 - 19.00	В							18 -
		19.00 - 19.45	U							19 -
		19.45	D							
		20.00	ES				====	Continued on next sheet		20 -

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

									Borehole No.
CD(SI INIDTE	-011				Во	reho	ole Log	BH11
GKC	OUNDTE CONSULTING	:CH						J	Sheet 3 of 3
Projec	t Name	: HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530009.52 - 185625.75	Hole Type CP
Locati	on:	LONDON					Level:	38.09	Scale 1:50
Client:	:	WATERMA	AN				Dates:	11/02/2021 - 12/02/2021	Logged By BM
Well	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	2
AAGII	Strikes	Deptil (III)	Туре	Results	(m)	(m)	Legena	Ottatum Description	'
		20.00 - 20.50	В				T		
		20.50	D						-
		20.50		N=32 (7,7/7,8,9,8)					
									21 -
							F_=_=		
		21.50 - 22.00	В				E-E-E		-
		22.00 - 22.45	U						22 –
		32.45	_						
		22.45	D						-
		23.00 - 23.50	В						23 -
		22.50							
		23.50 23.50	D	N=35 (6,8/7,9,8,11)		F_=_=		
					´		F_=_=		
							E_=_=		24 -
		24.50 25.00	_D				E		
		24.50 - 25.00	В						
		25.00	ES						25 —
		25.00 - 25.45							-
		25.45	D				F- <u>-</u>		
		26.00 - 26.50	В						26 -
		26.50		N=40					=
		26.50 - 26.95	D	(8,9/10,10,9,11)			F_=_=		-
		20.00 20.00					E_E_E		27 –
							E		-
		27.50 - 28.00	В				<u> </u>		-
									[:
		28.00 - 28.45	U						28
		28.45	D						
		29.00 - 29.50	В						29 -
		29.50 29.50	D	N=46					-
		29.95	D	(9,9/10,12,11,13)	00.00	0.00			-
Rema	rko	20.00			30.00	8.09		End of borehole at 30.00 m	30 -
Rema	INS								

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE	СН				Во	reho	ole Log	Borehole No. BH12	
	consulting at Name:		AY PRI		Project No.		Co-ords:	530021.45 - 185617.40	Sheet 1 of 4 Hole Type	
Locati		LONDON		(GRO-20291		Level:	38.26	CP Scale	
									1:50 Logged By	
Client:	: I	WATERM			1	Ι	Dates:	09/02/2021 - 11/02/2021	BM	
Well	Water Strikes	Sample: Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.50 0.50 - 1.00 1.00 1.20 1.20	ES B ES D	N=5 (1,1/2,1,1,1)	0.20	38.06 37.46		MADE GROUND: Grass over dark I gravelly slightly sandy clay topsoil. I subangular fine to coarse of mixed I including brick and chert. MADE GROUND: Soft slightly sand clay. Gravel is subangular fine to comixed lithologies including brick, charare concrete and rare ash. Soft to firm brown CLAY.	Gravel is ithologies y gravelly arse of	1 -
		1.70 - 2.00	В	N-3 (1,1/∠,1,1,1 <i>)</i>			<u> </u>			-
		2.00 2.00 - 2.45	ES U						2	2 —
		2.45 2.50 - 3.00 3.00 3.00 3.00 3.50 - 4.00 4.00 4.00 - 4.45	D B D ES B ES U	N=7 (2,1/1,2,1,3)				Firm from 4.00m bgl.		3
		4.45 4.50 - 5.00	D B							-
		5.00 5.00 5.00 5.50 - 6.00	D ES B	N=12 (2,3/2,3,3,4)					5	5 — - - - - -
		6.00 - 6.45	U						ε	6 — - -
		6.45 6.50 - 7.00 7.00 7.00	D B D	N=17 (2,4/3,5,4,5)					7	- - - 7 —
		7.50 - 8.00	В	(-, , , -, -, -, -, -, -, -, -, -, -, -,						- - - -
		8.00 - 8.45 8.45	U						8	8 — - - -
		9.00 9.00	B	N=27 (4,5/5,7,7,8)				Firm to stiff from 9.00m bgl.	ę	- - - 9 - - -
		9.50 - 10.00	В							-
Rema		10.00	ES					Continued on next sheet	10	0 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00 plain pipe and 3.00m slotted pipe. 4. PID results: 20.0m - 0.4ppm, 25.0m - 0.4ppm, all other PID results 0 - 0.2ppm.

									Borehole N	No.
	G					Во	reho	ole Log	BH12	
GRU	OUNDTE CONSULTING	СН					. •	J. 5 - 5 - 5	Sheet 2 o	f 4
Projec	t Name	: HOLLOW/	AY PRI		Project No. GRO-20291		Co-ords:	530021.45 - 185617.40	Hole Typ CP	e
Locati	on:	LONDON					Level:	38.26	Scale 1:50	
Client:		WATERMA	ΔN				Dates: 09/02/2021 - 11/02/2021		Logged By BM	
Well	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
V//XV//	Strikes	Dopui (iii)	Туре	Results	(m)	(m)	Logona	Cuatam Becomputer		1
		10.00 - 10.45	U							-
		10.45 10.50 - 11.00	D B		10.50	27.76		Stiff grey CLAY with occasional thin bands.	ı claystone	- - -
		11.00 11.00	D	N=22 (4,6/5,5,5,7)	,					11 -
		11.50 - 12.00	В							- - -
		12.00 - 12.45	U							12 -
		12.45 12.50 - 13.00	D B							- - -
		13.00 13.00	D	N=30 (5,7/6,8,8,8)						13 -
		13.50 - 14.00	В							-
		14.00 - 14.45	U							14 -
		14.45 14.50 - 15.00	D B							-
		15.00 15.00	D ES	N-24 (4 E/E 8 8 0						15
		15.00 15.50 - 16.00	В	N=31 (4,6/6,8,8,9)	'					-
										16
		16.50 - 16.95	U							-
		16.95 17.00 - 17.50	D B							17 -
										-
		18.00 18.00	D	N=33 (6,6/7,8,9,9))					18 -
		18.50 - 19.00	В							-
										19
		19.50 - 19.95	U							-
		19.95	D					Continued on next sheet		20 -
Rema	rks	I								

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00 plain pipe and 3.00m slotted pipe. 4. PID results: 20.0m - 0.4ppm, 25.0m - 0.4ppm, all other PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH12 Sheet 3 of 4
Projec	t Name:	: HOLLOWA	AY PRI		roject No. GRO-20291		Co-ords:	530021.45 - 185617.40	Hole Type CP
Locati	on:	LONDON					Level:	38.26	Scale 1:50
Client:		WATERMA	AN				Dates:	09/02/2021 - 11/02/2021	Logged By BM
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
	Cuntoo	20.00	Type ES	Results	()	()			-
		20.00 - 20.50	В				F		
							<u> </u>		_
									=
		21.00 21.00 - 21.45	D	N=35 (6,6/7,9,9,10)					21 —
		24 50 22 00	_				E-E-E		=
		21.50 - 22.00	В						-
									22 —
									-
		22.50 - 22.95	U				F		=
							E-E-E		
		22.95 - 23.00	D				<u> </u>		23 —
		23.00 - 23.50	В						=
							F		
		24.00		N=39					24 -
		24.00 - 24.45	D	(7,7/9,10,10,10)					-
		24.50 - 25.00	В						-
									=
		25.00	ES				E_=_=		25 _
							E-E-E		
		25.50 - 25.95	U						=
		25.95	D						=
		26.00 - 26.50	В						26 —
							F		=
									-
		27.00							
		27.00 27.00	D	N=40					27 —
		27.50 - 28.00	В	(8,8/8,10,10,12)					=
		_1.50 _20.00					F_=_=		-
							E===		28 —
							<u> </u>		-
		28.50 - 28.95	U						-
									-
		28.95	D				F		29 —
		29.00 - 29.50	В						-
							<u> </u>		
									-
Y/)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		30.00	D				F =	Continued on next sheet	30
Rema	rks	1	1		1		1		

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00 plain pipe and 3.00m slotted pipe. 4. PID results: 20.0m - 0.4ppm, 25.0m - 0.4ppm, all other PID results 0 - 0.2ppm.

									Borehole No.	
	G					Bo	reho	ole Log	BH12	
GRO	OUNDTE CONSULTING	CH					. •	3.0 209	Sheet 4 of 4	
Ducioo	t Name		W DDI	ICON	Project No.		Ca anda.	E20024 4E 40EC47 40	Hole Type	_
Projec	t Name	: HOLLOWA	AY PRI	ISON	GRO-20291		Co-ords:	530021.45 - 185617.40	СР	
Locati	on:	LONDON					Level:	38.26	Scale 1:50	
Client:		WATERMA	AN				Dates:	09/02/2021 - 11/02/2021	Logged By BM	
	Water	Samples	and	In Situ Testing	Depth	Level	İ			
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
		30.00		N=43						-
			_	(8,9/9,10,12,12)						-
		30.50 - 31.00	В							
							<u> </u>			1
		31.00	ES				<u> </u>		31	-
		04.50.04.05	l				E			=
		31.50 - 31.95	U							-
		31.95	D				E-E-E			=
		32.00 - 32.50	В				E===1		32	=
							<u> </u>			=
							L1			=
		33.00 33.00	D	N=47					33	
		00.00		(8,8/10,11,13,13)						
		33.50 - 34.00	В							_
							<u> </u>		34	-
										-
		34.50 - 34.95	U							-
										=
		34.95	D						35	\exists
										_
		35.50 - 36.00	В				F_=_=			
							F_=_=			4
		36.00	D				F_=_=		36	\exists
		36.00 36.00	ES	N=51			F_=_=			-
		36.50 - 37.00	_	(10,10/11,12,14,14	4)		F_=_=			=
		30.50 - 37.00	В				F_=_=			
							F_=_=		37	_
							E-E-E			-
		37.50 - 37.95	U				L			-
										-
		37.90 38.00 - 38.50	D B						38	_
		36.00 - 36.30					<u> </u>			
							<u> </u>			-
							<u> </u>			_
		39.00	D						39	
		39.00		N=50 (11,13/50 fc	or				33	-
		39.50 - 40.00	В	225mm)			<u> </u>			=
		30.00 - 40.00					<u> </u>			7
					40.00	-1.74	<u> </u>		40]
Rema	rks				+0.00	1.74	<u> </u>	End of borehole at 40.00 n	1 40	\dashv

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 8.00m bgl, 5.00 plain pipe and 3.00m slotted pipe. 4. PID results: 20.0m - 0.4ppm, 25.0m - 0.4ppm, all other PID results 0 - 0.2ppm.

	<u> </u>								Borehole N	lo.
	9					Bo	reho	ole Log	BH13	
GRO	OUNDTE	CH					. •	3.3 = 3	Sheet 1 of	4
Projec	t Name:	HOLLOWA	Y PRI		Project No.		Co-ords:	530047.07 - 185565.48	Hole Type)
					GRO-20291		-		CP Scale	
Locati	on:	LONDON					Level:	38.75	1:50	
Client:		WATERMA	AN				Dates:	02/02/2021 - 03/02/2021	Logged B	у
	Water	Samples	s and I	n Situ Testing	Depth	Level		0	I .	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	l	
					0.20	38.55		MADE GROUND: Tarmac over cond		-
		0.50	ES		0.40	38.35		MADE GROUND: Pale brown sand medium to coarse gravel of mixed li		=
		0.50 - 1.00	В					including quartzite. MADE GROUND: Soft brown grave	lly clay.	=
		1.00	D					Gravel is subangular fine to coarse lithologies including brick, concrete,	of mixed	1 -
		1.00 1.20	ES D					quartzite and ash.	onort,	=
		1.20		N=3 (1,0/1,0,1,1)						=
		1.50 1.50 - 2.00	ES B							
		2.00	D							2 _
		2.00 2.00	ES	N=5 (1,1/1,2,1,1)	2.15	36.60		Soft to firm brown CLAY with occasi crystals.	onal calcite	=
		2.50 - 3.00	В				<u> </u>	Grystals.		=
										=
		3.00 3.00 - 3.45	ES U							3 —
		3.45	D							=
		3.50 - 4.00	В				F			=
		4.00	D				E-E-			4 —
		4.00	ES	N-44 /4 0/0 0 0 4				Firm from 4.00m bgl.		-
		4.00 4.50 - 5.00	В	N=11 (1,2/2,2,3,4	'		<u> </u>			=
										=
		5.00	ES							5 -
		5.00 - 5.45	U							=
		5.45 5.50 - 6.00	D B				E_=_=			=
		6.00 6.00	D	N=16 (2,2/3,4,4,5	,			Firm to stif from 6.00m bgl.		6 —
				(,,,,,	,		<u> </u>			=
		6.50 - 7.00	В							_
		7.00 - 7.45	U							7 —
		7.00 - 7.43								′ =
		7.45	D				F]
		7.50 - 8.00	В				<u> </u>			=
		8.00	D							8 —
		8.00		N=19 (2,3/4,5,5,5)					=
		8.50 - 9.00	В							=
										=
		9.00 - 9.45	U							9 —
		9.45	D				<u> </u>			1
		9.50 - 10.00	В		9.70	29.05		000]
		10.00	D					Stiff grey CLAY.		10 —
Rema	rks	10.00						Continued on next sheet		10

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

	<u>a</u>								Borehole No.
CDC		·CU				Bo	reho	ole Log	BH13
GRU	OUNDTE	CH				_		9	Sheet 2 of 4
Projec	t Name:	: HOLLOWA	AY PRI		Project No.		Co-ords:	530047.07 - 185565.48	Hole Type
					GRO-20291				CP Scale
Location	on:	LONDON					Level:	38.75	1:50
Client:		WATERMA	AΝ				Dates:	02/02/2021 - 03/02/2021	Logged By BM
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1
1	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	Guatam Bescriptor	'
		10.00 10.00	ES	N=25 (4,4/5,6,7,7	·)				
		10.50 - 11.00	В	,] =
		11.00 - 11.45	U						11 -
		11.45 11.50 - 12.00	D B				<u> </u>		=
							<u> </u>		
		12.00 12.00	D	N=27 (4,4/5,7,7,8	3)				12 —
		10.50 10.00	_	·					
		12.50 - 13.00	В						
		13.00 - 13.45	U						13
		10.00 10.40					E-E-E-		
		13.45	D						
		13.50 - 14.00	В						
		14.00	D						14 —
		14.00		N=29 (4,4/6,7,8,8	5)				
		14.50 - 15.00	В						
		15.00 15.00 - 15.45	ES U						15
		15.45	D						
		16.00 16.00 - 16.50	В	N=31 (4,5/6,8,9,8	5)				16 —
		16.50	D						
									47
									17 —
		17.50 - 18.00	В						
		17.00 10.00						Claystone encountered between 17.60m a	nd 17.90m bgl.
		18.00 - 18.45	U						18
		18.45	D				<u> </u>		
							<u> </u>		
		19.00 - 19.50	В						19 —
							<u> </u>		
		19.50	D	N=22 /4 E/7 0 0 0	,				
		19.50		N=32 (4,5/7,8,8,9	"				-
Y//>\Y//		20.00	ES					Continued on next sheet	20 —
Remai	rks								

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

Project Name: HOLLOWAY PRISON										Borehole N	No.
Project Name: HOLLOWAY PRISON		9					Ro	reho	ole I oa	BH13	3
Project Name: HOLLOWAY PRISON	GRO	OUNDTE CONSULTING	CH				DO		old Log		
Colent Company Colent Company Colent	Projec	ct Name	: HOLLOWA	Y PRI				Co-ords:	530047.07 - 185565.48	Hole Typ	
Water Strikes Depth (m) Type Results Depth (m) Depth (m) Depth (m) Type Results Depth (m)	Locati	on:	LONDON					Level:	38.75	Scale	
Vel Strike Depth (m) Type Results (m) (m) (m) Legend Stratum Description	Client	:	WATERMA	AN				Dates:	02/02/2021 - 03/02/2021		Зу
20.50 - 21.00 B 21.00 - 21.45 U 21.45 D 22.00 - 22.50 B 22.50 D 22.50 D 24.00 - 24.45 U 24.45 D 25.00	Well	Water Strikes		I		Depth (m)		Legend	Stratum Description	1	
21.00 - 21.45 U 21.45 D 22.00 - 22.50 B 22.50 D 22.50 D 23.50 - 24.00 B 24.00 - 24.45 U 24.45 D 25.00			Deptil (III)	Турс	results		, ,				_
21.45 D 22.00 - 22.50 B 22.50 D 22.50 D 23.50 - 24.00 B 24.00 - 24.45 U 24.45 D 25.00 ES 25.00 25.00 ES 25.00 25.00 B 27.00 - 27.45 U 27.45 D			20.50 - 21.00	В					Claystone encountered between 20.40m ar	nd 20.70m bgl.	-
22.00 - 22.50 B 22.50 D 22.50 D N=34 (4,5/8,9,8,9) 23 23.50 - 24.00 B 24.00 - 24.45 D 25.00 25.00 25.00 25.00 25.00 25.00 25.00 B N=36 (5,5/8,9,9,10) 26 27.00 - 27.45 D 27.45 D			21.00 - 21.45	U							21 —
22.50 D N=34 (4.5/8.9.8.9) 23.50 - 24.00 B 24.00 - 24.45 U 24.45 D 25.00 ES 25.00 25.00 ES 25.00 - 25.50 B N=36 (5.5/8,9.9.10) 26 27.00 - 27.45 U 27.45 D			21.45	D							-
22.50 N=34 (4,5/8,9,8,9) 23.50 - 24.00 B 24.00 - 24.45 U 24.45 D 25.00 25.00 25.00 25.00 25.00 25.00 B N=36 (5,5/8,9,9,10) 26 27.00 - 27.45 U 27.45 D											22 —
24.00 - 24.45 U 24.45 D 25.00 D 25.00 ES 25.00 25.00 B N=36 (5.5/8,9.9,10) 26.50 - 27.00 B 27.00 - 27.45 U 27.45 D				D	N=34 (4,5/8,9,8,9)					23 —
24.45 D 25.00 D 25.00 ES 25.00 25.00 B N=36 (5,5/8,9,9,10) 26.50 - 27.00 B 27.00 - 27.45 U 27.45 D			23.50 - 24.00	В							-
25.00 DES 25.00 ES 25.00 25.00 B N=36 (5,5/8,9,9,10)											24 -
25.00 25.00 B N=36 (5,5/8,9,9,10) 25.00 - 25.50 B N=36 (5,5/8,9,9,10) 26.50 - 27.00 B 27.00 - 27.45 U 27.45 D											
26.50 - 27.00 B 27.00 - 27.45 U 27.45 D			25.00 25.00	ES	N=36 (5,5/8,9,9,10	0)					25
27.00 - 27.45 U											26 —
27.45 D =											
											21 -
28.00 - 28.50 B			28.00 - 28.50	В							28 —
28.50 D N=50 (6,7/8,9,17,16)			28.50 28.50	D	N=50 (6,7/8,9,17,1	6)			Claystone encountered between 28.80m ar	nd 29.00m bgl.	- - - - - - - - -
29 29 29 29 29 29 29 29 29 29 29 29 29 2			29.50 - 30.00	В					1		29 -
30.00 ES Continued on next sheet			30.00	ES					Continued on next sheet		30 -

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

									Borehole N	lo.
GPC	G DUNDTE	:CU				Во	reho	ole Log	BH13	
GAC	JUND I E CONSULTING	:Сп 							Sheet 4 of	
Projec	t Name	: HOLLOWA	AY PRI		Project No. GRO-20291	-	Co-ords:	530047.07 - 185565.48	Hole Type CP	Э
Locati	on:	LONDON					Level:	38.75	Scale 1:50	
Client:		WATERMA	AN				Dates:	02/02/2021 - 03/02/2021	Logged By BM	У
Well	Water		s and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Dopui (iii)	Туре	Results	(m)	(m)	Legend	Otratum Description	I	
		30.00 - 30.45	U							-
		30.45	D							-
		31.00 - 31.50	В							31 -
		31.50 31.50	D	N=40 (6,8/9,10,10,11)						32 —
		32.50 - 33.00	В							32 - - - -
		33.00 - 33.45	U							33 —
		33.45	D							- - - -
		34.00 - 34.50	В							34 -
		34.50 34.50 35.00	D ES	N=47 (8,9/10,10,12,15))					35 —
		35.50 - 36.00	В							-
		36.00 - 36.45	U							36 —
		36.35	D							- - -
		37.00 - 37.50	В							37 -
		37.50 37.50	D	N=50 (9,11/50 fo 280mm)	r					38 -
		38.50 - 39.00	В							-
		39.00	D							39
		40.00	ES		40.00	-1.25		End of borehole at 40.00 m		40 -
Rema	rks									

Remarks
1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH14 Sheet 1 of	4
Projec	t Name:	HOLLOWA	AY PRI	SON	Project No. GRO-20291		Co-ords:	530092.02 - 185532.88	Hole Type CP	÷
Locati	on:	LONDON					Level:	38.65	Scale 1:50	
Client:		WATERMA	AN				Dates:	27/01/2021 - 29/01/2021	Logged By BM	У
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	Strikes	Depth (m) 0.50 0.50 0.50 1.00 1.00 1.20 1.50 1.50 - 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00	Type DSBD ESBDESBBESU DB DSBB U DB	Results N=50 (9,12/50 for 285mm) N=10 (6,7/3,2,2,3) N=10 (1,2/2,3,2,3)	2.30	(m) 38.40 38.20 38.00 37.85		MADE GROUND: Tarmac over con- MADE GROUND: Soft brown slight gravelly clay. Gravel is subangular to subrounded fine to coarse of mixed including quartzite and chert. MADE GROUND: Red brown sand, subangular medium to coarse grave. Cobbles are subangular to subroun MADE GROUND: Pale brown slight very gravelly medium to coarse sof mixed including chert, quartzite, brick and MADE GROUND: Pale brown fine to sand and subrounded fine to coarse chert, quartzite and chert. Soft to firm brown CLAY.	ly sandy very lo lithologies y cobbly el of brick. ded of brick. tly clayey d. Gravel is lithologies concrete. o medium e gravel of	3
		7.00 7.00 7.50 - 8.00	D B	N=18 (3,3/4,4,5,5)					7 -
		8.45 8.50 - 9.00	U D B							8 -
		9.00 9.00 9.50 - 10.00	D B	N=25 (3,4/5,6,7,7	9.60	29.05		Stiff grey CLAY.		9 -
Remai		10.00	ES					Continued on next sheet		10 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 1.0m - 0.3ppm, 1.5m - 0.5ppm, all other PID results 0 - 0.2ppm.

	DUNDTE CONSULTING		AY PRI		Project No.	Bo	reho	ole Log 530092.02 - 185532.88	Borehole N BH14 Sheet 2 of Hole Type	4
Locati		LONDON		(GRO-20291		Level:	38.65	CP Scale	
Client		WATERMA	AN				Dates:	27/01/2021 - 29/01/2021	1:50 Logged By BM	у
Well	Water Strikes		s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	'	
		10.00 - 10.45	U	Results	,	,				_
		10.45 10.50 - 11.00	D B							-
		11.00 11.00	D	N=26 (3,4/6,7,6,7)						11 -
		11.50 - 12.00	В							- - - -
		12.00 - 12.45	U							12 -
		12.45 12.50 - 13.00	D B					Claystone encountered between 12.60m a	nd 12.90m bgl.	- - -
		13.00 13.00	D	N=25 (4,4/5,6,7,7)						13 -
		13.50 - 14.00	В							- - - -
		14.00 - 14.45	U							14 =
		14.35 14.50 - 15.00	D B							_ _ _
		15.00 15.00 15.00	D ES	N=29 (4,4/6,7,8,8)						15 -
		16.00 - 16.50	В							16 —
		16.50 - 16.95	U							-
		16.95	D							17 -
		17.50 - 18.00	В							- - - -
		18.00 18.00	D	N=31 (4,5/6,8,8,9)						18 -
		19.00 - 19.50	В							19
		19.50 - 19.95	U							-
		19.95	D					Continued on next sheet		20 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 1.0m - 0.3ppm, 1.5m - 0.5ppm, all other PID results 0 - 0.2ppm.

	G					Bo	reho	ole Log	Borehole No. BH14
GR	OUNDTE	CH				DO	. 0110	no Log	Sheet 3 of 4
Projec	t Name:	: HOLLOWA	Y PRI		Project No. SRO-20291		Co-ords:	530092.02 - 185532.88	Hole Type CP
Locati	on:	LONDON		-			Level:	38.65	Scale 1:50
Client	:	WATERMA	۸N				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water Strikes	-	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n
		20.00	ES	resuits		. ,			
		20.50 - 21.00	В						
		21.00 21.00	D	N=33 (4,5/7,8,8,10))				21 —
									<u>-</u> - - -
		22.00 - 22.50	В						22 -
		22.50 - 22.95 22.50 - 22.95	U						
		22.95	D						23
		23.50 - 24.00	В						
		24.00 24.00	D	N=34 (4,5/7,9,9,9)					24 -
		25.00 25.00 - 25.50	ES B						25 —
		25.85	D						26
		26.50 - 27.00	В						- - - -
		27.00 27.00	D	N=37 (5,6/8,8,10,11)				27
		28.00 - 28.50	В						28 —
		28.50 - 28.95	U						
		28.95 29.00 - 39.00	D D						29
		29.50 - 30.00	В						
	rks	30.00	D					Continued on next sheet	30

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 1.0m - 0.3ppm, 1.5m - 0.5ppm, all other PID results 0 - 0.2ppm.

GROUN	NDTECH ULTING				Во	reho	ole Log	Borehole No. BH14 Sheet 4 of 4
Project Na	ame: HOLLOW	AY PRI		Project No. SRO-20291		Co-ords:	530092.02 - 185532.88	Hole Type CP
Location:	LONDON					Level:	38.65	Scale 1:50
Client:	WATERM	AN				Dates:	27/01/2021 - 29/01/2021	Logged By BM
			n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n
	30.00	Type ES			, ,			_
.48 84	30.00		N=39 (7,7/8,10,10,11)					- - - -
	31.00 - 31.50	В						31 —
	31.50 - 31.95	U						=
	31.85	D						32 —
	32.50 - 33.00	В						
	33.00 33.00	D	N=47 (8,8/10,11,13,13)					33 -
	34.00 - 34.50	В						34 —
	34.50 - 34.95	U				<u> </u>		
	34.95 35.00	D ES						35 —
	35.50 - 36.00	В						
	36.00 36.00	D	N=50 (9,10/11,13,13,13)					36 - - - -
	37.00 - 37.50	В						37 —
	37.50 - 37.95	U						=
	37.85	D						38 —
	38.50 - 39.00	В						
	39.00		N=50 (10,13/50 for 220mm)					39 —
	39.50 - 40.00	В						
Remarks	40.00	ES		40.00	-1.35		End of borehole at 40.00 r	_n 40 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 1.0m - 0.3ppm, 1.5m - 0.5ppm, all other PID results 0 - 0.2ppm.

									Borehole N	1 0.
GRO	S DUNDTE	.cn				Во	reho	ole Log	BH15	,
UNO	CONSULTING						<u> </u>		Sheet 1 of	
Project	t Name:	: HOLLOWA	AY PRI	ICC INI	Project No. GRO-20291		Co-ords:	: 530153.07 - 185504.08	Hole Type CP	е
Locatio	on:	LONDON					Level:	37.80	Scale 1:50	
Client:		WATERMA	AN				Dates:	28/01/2021 - 28/01/2021	Logged B BM	y
Well	Water Strikes			In Situ Testing	Depth	Level	Legend	Stratum Description	1	
V//XV//	Strikes	Depth (m)	Туре	Results	(m)	(m)				<u> </u>
		0.50 1.00 1.00 1.20	ES D ES	N=11 (1,1/2,3,3,3)	1.00	37.60 36.80		MADE GROUND: Grass over dark gravelly sandy clay topsoil. Gravel i subrounded fine to coarse of mixed including brick, concrete and chert. MADE GROUND: Soft brown slight gravelly clay. Gravel is subangular of mixed lithologies including brick, chert and rare concrete. Occasiona cobbles of brick.	is angular to I lithologies Ily sandy fine to coarse quartzite,	1 —
		2.00 2.00 2.00	D ES					Firm brown CLAY. Firm to stiff from 1.90m bgl.		2 —
		2.50 - 3.00 3.00	B D	N=15 (2,3/3,4,4,4)				-		3 —
		3.00 3.00 - 3.45 3.50 - 4.00	ES U B							
		4.00 4.00 4.50 - 5.00	D B	N=18 (3,3/4,4,4,6)						4 -
		5.00 5.00 5.00 - 5.45 5.50 - 6.00	D ES U B							5
		6.00 6.00	D	N=23 (4,4/5,5,6,7)						6 -
		7.00 7.00 7.00 - 7.45	B D U							7 -
		7.50 - 8.00	В							- - -
		8.00 8.00 8.50 - 9.00	D B	N=24 (4,4/5,5,6,8)						8 -
		9.00 9.00 - 9.45	D							9 -
		9.50 - 10.00	В							-
Remar		10.00	D					Continued on next sheet		10 -

Remarks

1. Hand excavated pit to 1.20m bgl. 2. Groundwater encountered at 3.50m bgl rising to 3.00m after 20 minutes. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

	G					Bo	reho	ole Log	Borehole No	Э.
GRO	OUNDTE	CH					. 0	510 2 09	Sheet 2 of 3	3
Projec	t Name:	HOLLOWA	Y PRI		roject No. GRO-20291		Co-ords:	530153.07 - 185504.08	Hole Type CP	
Locati	on:	LONDON		C	3KO-20291		Level:	37.80	Scale 1:50	
Client:		WATERMA	AN				Dates:	28/01/2021 - 28/01/2021	Logged By BM	′
Well	Water		I	In Situ Testing	Depth	Level	Legend	Stratum Description		
V//2\V//	Strikes	Dopuii (iii)	Type ES	Results	(m)	(m)		<u>'</u>		
		10.00 10.00	ES	N=26 (4,5/5,6,7,8)						1
		10.50 - 11.00	В		10.50	27.30		Stiff grey CLAY.		-
		11.00 11.00 - 11.45	D U							11 -
		11.50 - 12.00	В							
		12.00 12.00	D	N=31 (5,6/6,7,8,10)						12 —
		12.50 - 13.00	В							-
		13.00 13.00 - 13.45	U							13 — - - -
		13.50 - 14.00	В							-
		14.00 14.00	D	N=37 (5,6/7,8,10,12						14 — - - -
		14.50 - 15.00	В							-
		15.00 15.00 15.00 - 15.45 15.50 - 16.00	D ES U B							15 —
		16.00	D							16 —
		16.50 17.00 - 17.50	В	N=39 (6,7/7,9,10,13)					- - - 17 —
		17.50	D							
		18.00 - 18.45	U							18
		18.50 - 19.00	В							-
		19.00	D							- 19 —
		19.50		N=47 (7,8/10,10,13,14)						-
Rema	rke	20.00	D					Continued on next sheet		20 -

Remarks

1. Hand excavated pit to 1.20m bgl. 2. Groundwater encountered at 3.50m bgl rising to 3.00m after 20 minutes. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

GROUNDTECH CONSULTING					Rο	reho	ole Log	Borehole No. BH15
GROUNE CONSULT	OTECH TING				טט		old Log	Sheet 3 of 3
Project Nar	me: HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530153.07 - 185504.08	Hole Type CP
Location:	LONDON					Level:	37.80	Scale 1:50
Client:	WATERMA	۸N				Dates:	28/01/2021 - 28/01/2021	Logged By BM
Well Wat			n Situ Testing	Depth	Level	Legend	Stratum Description	
Well Strik		Type ES B D U B D B D ES	Results N=50 (8,10/50 fo 240mm) N=50 (9,10/50 fo 235mm)	(m)	Level (m)	Legend	Stratum Description End of borehole at 25.00 m	21
								-
Remarks								30 —

^{1.} Hand excavated pit to 1.20m bgl. 2. Groundwater encountered at 3.50m bgl rising to 3.00m after 20 minutes. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

GRO	CONSULTING	СН				Во	reho	ole Log	Borehole N BH16	;
Proied	t Name:	HOLLOWA	AY PRIS	S() N	Project No.		Co-ords:	530001.19 - 185600.86	Sheet 1 of Hole Type	
Locati		LONDON			GRO-20291		Level:	38.24	CP Scale 1:50	
Client	:	WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged By	у
Well	Water	Samples	s and l	n Situ Testing	Depth	Level	Legend	Stratum Description	BM	
****	Strikes	Depth (m)	Туре	Results	(m) 0.15	(m) 38.09	Logona	MADE GROUND: Tarmac over grey		
		0.50 0.50 1.00	B ES		0.40	37.84		MADE GROUND: farmac over giely MADE GROUND: Grey pink slightly sandy subangular medium gravel of lithologies including quartzite and gi MADE GROUND: Soft brown slightl gravelly clay. Gravel is angular to su fine to coarse of mixed lithologies in	r clayey f mixed ranite. ly sandy very ubrounded	1 —
		1.20 1.20	В	N=4 (1,1/0,1,1,2)				chert, quartzite, brick, concrete and Occasional subangular cobbles of b	rare ash.	
		1.70	ES							=
		2.00 2.00	B ES		2.00	36.24		MADE GROUND: Soft to firm slightl clay. Gravel is subangular fine to co mixed lithologies including brick, che	arse of	2 -
		2.60 2.65	ES D		2.60	35.64		quartzite. Soft to firm brown mottled grey CLA	Y.	
		3.00 3.00	D	N=6 (2,1/1,1,2,2)						3 -
		3.50 3.50	B ES							_
		4.00 4.00	ES U							4 =
		4.45 4.50	D B					Firm from 4.50m bgl.		
		5.00 5.00	D	N=15 (3,4/3,4,4,4)					5 —
		5.50	В							-
		6.00 6.00	ES U							6 -
		6.45 6.50	D B							-
		7.00 7.00	D	N=18 (3,4/5,4,4,5)					7 -
		7.50	В							-
		8.00	U							8 -
		8.45	D		8.50	29.74		Firm to stiff grey CLAY with occasion	nal bands of	
		8.80 8.80 9.00 9.00	B D D	N=21 (4,4/5,6,5,5)			claystone.		9 -
		9.50	В							-
Rema	rko							Continued on next sheet		10 —

Remarks

1. Hand excavated it to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH16 Sheet 2 of 4
Projec	t Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530001.19 - 185600.86	Hole Type CP
Locati	on:	LONDON					Level:	38.24	Scale 1:50
Client		WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged By BM
Well	Water Strikes	Sample: Depth (m)	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1
		Dopur (III)	1900	results					
		10.45 10.50	D B						
		11.00 11.00 11.00	D ES	N=28 (5,5/6,7,7,8)					11 -
		11.50	В						
		12.00	U						12
		12.45 12.50	D B						
		13.00 13.00	D	N=29 (5,7/6,7,8,8)					13 —
		13.50	В						
		14.00 14.45	U D						14 -
		14.50	B				<u></u>		15
		15.00 15.00		N=35 (5,7/7,8,9,11)				15 -
		15.50	B ES						16
		16.50	U						
		16.95 17.00	D B						17
		18.00 18.00	D	N=34 (7,7/7,8,9,10)				18 —
		18.50	В						
									19 —
		19.50	U						
Rema		19.95	D					Continued on next sheet	20

Remarks

1. Hand excavated it to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GRO	OUNDTE	СН				Во	rehc	ole Log	Borehole No. BH16 Sheet 3 of 4
Projec	ct Name:	HOLLOW	AY PRI		roject No. RO-20291		Co-ords:	530001.19 - 185600.86	Hole Type CP
Locati	on:	LONDON					Level:	38.24	Scale 1:50
Client	:	WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged By BM
Well	Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
	Strikes	Depth (m) 20.00	Type B	Results	(111)	(111)			
		21.00	D						21 —
		21.00 21.50	В	N=39 (7,7/8,9,11,11)					
		22.50	U						22 -
		22.95 23.00 23.00	D B ES						23 -
		24.00 24.00	D	N=37 (6,8/8,8,10,11)					24 —
		24.50	В						25 —
		25.50	U						-
		25.95 26.00	D B						26 -
		27.00 27.00	D	N=38 (6,7/8,10,10,10)					27
		27.50	В						28
		28.50	U						-
		28.95 29.00 29.00	D B ES						29 -
		30.00	D					Continued on next sheet	30

Remarks

1. Hand excavated it to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

GROUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH16 Sheet 4 of 4
Project Name:	HOLLOWA	AY PRI		roject No. RO-20291		Co-ords:	530001.19 - 185600.86	Hole Type CP
Location:	LONDON		1			Level:	38.24	Scale 1:50
Client:	WATERMA	ΑN				Dates:	05/02/2021 - 09/02/2021	Logged By BM
Well Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	n
ou intoo	Depth (m) 30.00	Туре	Results N=39 (7,7/7,9,11,12)		()			_
	30.50	В	(1,777,0,11,12)					-
								31 —
	31.50	U						<u>-</u> - -
	31.95 32.00	D B						32 -
	32.50	ES						<u>-</u> -
	33.00 33.00	D	N=44 (8,8/9,11,11,13)				33 -
	33.50	В						34 —
	34.50	U						-
	34.85 35.00	D B						35 -
								-
	36.00 36.00	D	N=48 (9,9/10,12,13,13)					36
	36.50	В	,					37 —
	37.50	U						57 - - - -
	37.85 38.00	D B						38 -
								-
	39.00 39.00	D	N=51 (11,12/51 for 225mm)					39 —
	39.50	В	320)					- - -
Remarks				40.00	-1.76		End of borehole at 40.00 r	40 -

Remarks

1. Hand excavated it to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

									Borehole N	۱o.
CDC		CU				Во	reho	ole Log	BH17	,
GKU	OUNDTE	СН					• • -	J. 2 – 2 J	Sheet 1 of	f 2
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	529969.61 - 185562.44	Hole Type CP	е
Location	on:	LONDON					Level:	41.95	Scale 1:50	
Client:		WATERMA	AN				Dates:	21/01/2021 - 22/01/2021	Logged B BM	y
Well	Water	Samples	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
V//X\V//	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	MADE GROUND: Tarmac over grey		
					0.35	41.60				
		0.50 0.50	D ES		0.35	41.25		MADE GROUND: Black grey sandy subrounded medium to coarse grav lithologies including tarmac, ash, ch	el of mixed	
		1.00	ES		05	11.20		∖ concrete.	/	1 =
		1.00	D ES					MADE GROUND: Very soft brown s gravelly clay. Gravel is subangular t	fine to coarse	1 -
		1.20 1.50	ES	N=7 (1,1/2,2,2,1)	1.50	40.45		of mixed lithologies including quartz brick.	zite, chert and	
		1.50 - 2.00	В		1.00	40.40		Soft brown CLAY.		1 ‡
		2.00	ES							2 -
		2.00 - 2.45	Ū				F_=_=			
		2.50	D				E-E-E-			_
		2.50 - 3.00	В							
		3.00	D					Firm from 3.00m bgl.		3 -
		3.00 3.00	ES	N=16 (2,3/3,4,4,5	,		<u> </u>	I IIIn nom 3.00m sg.]
		3.00 - 13.00	D B	·· ·- (,, , , , ,	´					=
		3.50 - 4.00					F			
		4.00	ES				E-E-E-1			4 =
		4.00 - 4.45	U				<u> </u>			-
		4.50	D				<u> </u>]
		4.50 - 5.00	В							
		5.00 5.00	D ES				F_=_=			5 -
		5.00	5	N=22 (5,5/6,5,5,6)		F			
		5.50 - 6.00	В				E- <u>-</u> -			-
							E-E			
		6.00 - 6.45	U				<u> </u>			6 _
		6.40	D							
		6.50 - 7.00	В				<u> </u>			
]
		7.00 7.00	D	N=50 (10.11/50 fo	r		F- <u>-</u>			7 —
			_	N=50 (10,11/50 fo 75mm)			E]
		7.50 - 8.00	В				<u> </u>			=
		2 2 2 4 5					===			-
		8.00 - 8.45	U							8 -
										-
		8.50 8.50 - 9.00	D B							=
		0.00	_				E-E-E			_
		9.00 9.00	D	N=23 (4,5/5,6,6,6))					9 -
		9.50 - 10.00	В				<u> </u>]
		9.30 - 10.00								_
		10.00	ES							10 -
Remai	ks	10.00						Continued on next sheet		

Remarks

1. Hand dug pit to 1.20m bgl. 2. groundwater encountered at 1.30m bgl. 3. No installation. 4. Backfilled with arisings and bentonite. 5. All PID results 0 - 0.2ppm.

	G								Borehole N	10.
GRO	DUNDTE	·CH				Bo	reho	ole Log	BH17	
- Orice	CONSULTING	CIT							Sheet 2 of 2	
Projec	t Name:	: HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	529969.61 - 185562.44	Hole Type CP	
Locati	on:	LONDON					Level:	41.95	Scale 1:50	
Client:		WATERMA	AN				Dates:	21/01/2021 - 22/01/2021	Logged B BM	у
Well	Water	Samples	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	n	
V//XV///	Strikes	Depth (m)	Type U	Results	(m)	(m)	Logona	Oliatain Booti.p.i.c.		
		10.00 - 10.45	"							-
		10.50	D		10.50	31.45		Stiff grey CLAY.		- - -
		11.00 11.00	D	N=27 (5,5/6,6,7,8)						11 -
		11.50 - 12.00	В							- - - -
		12.00 - 12.45	U							12 -
		12.50	D							- - -
		13.00		N=35 (5,6/7,8,9,11)					13 -
		13.50 - 14.00	В							-
		14.00 - 14.45	U							14 -
		14.50	D							-
		15.00 15.00 15.00	D ES	N=31 (5,6/6,8,8,9)						15 -
		15.50 - 16.00	В							16 -
		16.50 - 16.95	U							-
		17.00	D							17 -
		17.00 - 17.50	В							- - - -
		18.00 18.00	D	N=41 (6,7/8,9,11,13	3)					18 -
		18.50 - 19.00	В							-
		19.00	D							19
		19.50 - 19.95	U							-
Rema		19.90 19.90	D ES		20.00	21.95		End of borehole at 20.00 n	n	20 -

Remarks
1. Hand dug pit to 1.20m bgl. 2. groundwater encountered at 1.30m bgl. 3. No installation. 4. Backfilled with arisings and bentonite. 5. All PID results 0 - 0.2ppm.

CDO	G	CU				Во	reho	ole Log	Borehole N	
GRU	OUNDTE CONSULTING	СП							Sheet 1 of	
Projec	t Name:	HOLLOWA	AY PRI	SON	Project No. GRO-20291		Co-ords:	530010.40 - 185536.25	Hole Type CP	
Locati	on:	LONDON		1			Level:	40.84	Scale 1:50	
Client	:	WATERMA	ΔN				Dates:	21/01/2021 - 21/01/2021	Logged B	у
\\\\	Water	Sample	s and I	In Situ Testing	Depth	Level	Lawand	Ctuati un Dagarinti au		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
								MADE GROUND: Tarmac over cond	crete.	-
		0.50 0.50	D ES		0.40	40.44		MADE GROUND: Soft brown slightl gravelly clay. Gravel is subangular t	0	1 =
		1.00 1.00	D ES		0.90	39.94		subrounded fine to coarse of mixed including brick, chert, ash, concrete quartzite. Cobbles are subangular to	and	1 -
		1.00 - 1.50 1.20	ES D					of brick. Soft brown slightly sandy gravelly cl	ay. Gravel is	=
		1.20 1.50	D	N=9 (1,2/2,2,3,2)				angular to subrounded fine to mediu lithologies including brick and chert.		-
		2.00 2.00	B D		2.00	38.84		CLAYSTONE.		2 -
		2.00 2.00	ES	N=50 (20,5/50 for 30mm)	2.45	38.39		Firm brown CLAY.		
		2.90	D	ooniin)						-
		3.00 3.00 - 3.45	ES U					Firm to stiff from 3.00m bgl.		3 —
		3.50	В							_
		4.00	D							4 —
		4.00 4.00	ES	N=15 (2,2/3,3,4,5))			Occasional calcite crystals from 4.00m bgl.		
		4.50	В	,						
		5.00	ES							5 —
		5.00 - 5.45	U							-
		5.50	В							-
		5.90 6.00	D D							6 -
		6.00	_	N=16 (2,3/3,4,4,5))					=
		6.50	В							
		6.90 7.00 - 7.45	D U							7 -
		7.50	В							-
		7.50								-
		8.00 8.00	D	N=22 (4,5/5,5,6,6))					8 -
		8.50	В	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
										_
		9.00 - 9.45	U							9 -
		9.50 9.50	B D		9.50	31.34		Stiff grey CLAY.		
		10.00	ES				<u> </u>	Continued on next sheet		10 —
Rema	ulca.			I			1	Contained on next sheet		

Remarks

1. Hand dug pit to 1.20m bgl. 2. Groundwater encountered at 1.90m bgl. 3. Chiselling between 2.00m and 2.50m bgl (60 mins). 4. Installation to 8.00m bgl, 5.00m plain pipe and 3.00m slotted pipe. 5. PID results: 0.5m - 0.8ppm, 1.0m - 1.2ppm, 1.5m - 11.2ppm, all other PID results 0 - 0.2ppm.

GRO	GROUNDTECH CONSULTING roject Name: HOLLOWAY PRISON					Во	reho	ole Log	Borehole No. BH18 Sheet 2 of 3	
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530010.40 - 185536.25	Hole Type CP	
Locati	on:	LONDON					Level:	40.84	Scale 1:50	
Client:		WATERMA	AN				Dates:	21/01/2021 - 21/01/2021	Logged By BM	
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Dopar (III)	1990	reduito						_
		10.50 10.50 10.50	B D	N=28 (5,5/6,7,7,8)						
		11.00 - 11.45	U						11	-
		11.50	D							-
		12.00 12.00	D	N=28 (5,6/6,6,7,9)					12	: -
		12.50	В							-
		13.00 - 13.45	U						13	, –
		13.50	D							-
		14.00 14.00	D	N=30 (5,6/6,7,8,9)					14	. —
		14.50	В	(0,0,0,0,1,0,0)						
		15.00 15.00 - 15.45	ES U						15	
		15.50	D							
		16.50	D						16	
		16.50 17.00	В	N=31 (5,6/7,7,8,9)					17	,
		18.00 - 18.45	U						18	
		18.50	D				<u></u>			_
		19.00	В						19	, =
		19.50 19.50	D	N=36 (6,6/8,9,9,10)					
Rema		19.90 20.00	ES B					Continued on next sheet	20	, =

Remarks

1. Hand dug pit to 1.20m bgl. 2. Groundwater encountered at 1.90m bgl. 3. Chiselling between 2.00m and 2.50m bgl (60 mins). 4. Installation to 8.00m bgl, 5.00m plain pipe and 3.00m slotted pipe. 5. PID results: 0.5m - 0.8ppm, 1.0m - 1.2ppm, 1.5m - 11.2ppm, all other PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH18 Sheet 3 of	3
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530010.40 - 185536.25	Hole Type CP	9
Locati	on:	LONDON					Level:	40.84	Scale 1:50	
Client:		WATERMA	λN				Dates:	21/01/2021 - 21/01/2021	Logged By BM	У
Well	Water Strikes	-	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	rks	21.00 - 21.45 21.50 22.00 22.50 22.50 24.00 - 24.45	U D B D U D	N=36 (5,6/7,9,9,11	25.00	15.84		End of borehole at 25.00 m		21

Remarks
1. Hand dug pit to 1.20m bgl. 2. Groundwater encountered at 1.90m bgl. 3. Chiselling between 2.00m and 2.50m bgl (60 mins). 4. Installation to 8.00m bgl, 5.00m plain pipe and 3.00m slotted pipe. 5. PID results: 0.5m - 0.8ppm, 1.0m - 1.2ppm, 1.5m - 11.2ppm, all other PID results 0 - 0.2ppm.

									Borehole N	lo.
GRO	S DUNDTE	CH				Во	reho	ole Log	BH19	1
GAC	CONSULTING	CH						<u> </u>	Sheet 1 of	
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530044.11 - 185509.66	Hole Type CP	
Locati	on:	LONDON		'			Level:	41.00	Scale 1:50	
Client	:	WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged B BM	У
Well	Water Strikes			n Situ Testing	Depth (m)	Level	Legend	Stratum Description	1	
	Suikes	Depth (m)	Туре	Results	(111)	(m)		MADE GROUND: Tarmac over con-	arata	
		0.50 0.50 0.50 - 1.00	D ES B		0.25 0.45	40.75 40.55		MADE GROUND: farmac over con- MADE GROUND: Pale brown sand medium to coarse gravel of mixed li including quartzite. Soft brown CLAY.	y subangular	 - - - - - - - - - - - - - - - - - -
		1.00 1.00 1.20	D ES D							1 —
		1.20		N=6 (1,1/2,1,1,2))		E-E-E			=
		2.00 2.00 2.00	D ES	N=8 (1,2/2,2,1,3)	1.80	39.20		Soft to firm mottled grey CLAY. Slight hydrocarbon odour between 2.00m a	nd 3.20m bgl.	2 —
		2.50 - 3.00	В							
		3.00 3.00 - 3.45	ES U					Firm from 3.00m bgl.		3 -
		3.45 3.50 - 4.00	D B							
		4.00 4.00 4.00	D ES	N=14 (2,2/3,4,3,4	,					4 =
		4.50 - 5.00	В	N-14 (2,2/3,4,3,4	,					-
		5.00 5.00 - 5.45	ES U							5 -
		5.45 5.50 - 6.00	D B							
		6.00 6.00	D	N=17 (2,2/4,4,4,5)					6 -
		6.50 - 7.00	В							-
		7.00 - 7.45	U							7 -
		7.45 7.50 - 8.00	D B							
		8.00 8.00	D	N=20 (2,3/4,5,6,5)					8 -
		8.50 - 9.00	В							-
		9.00 - 9.45	U							9 -
		9.45 9.50 - 10.00	D B		9.30	31.70		Stiff grey CLAY.		- - - -
		10.00	D					Continued on next sheet		10 —
Dama										

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.5ppm, 2.0m - 1.8ppm, 3.0m - 1.2ppm, all other PID results 0 - 0.2ppm.

	OUNDTE CONSULTING				Project No.	Во		ole Log	Borehole No. BH19 Sheet 2 of 4 Hole Type
	t Name:		AY PRI		GRO-20291		Co-ords:	530044.11 - 185509.66	CP Scale
Locati	on:	LONDON					Level:	41.00	1:50
Client	:	WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged By BM
Well	Water	-		n Situ Testing	Depth	Level	Legend	Stratum Description	
	Strikes	Depth (m) 10.00 10.00	Type ES	Results N=24 (2,3/5,6,6,7	(m)	(m)		·	
		10.50 - 11.00	В	14-24 (2,0/0,0,0,7	,		<u> </u>		
		11.00 - 11.45	U						11 — -
		11.45 11.50 - 12.00	D B						
		12.00 12.00	D	N=26 (3,4/6,7,6,7					12 —
		12.50 - 13.00	В				<u> </u>		-
		13.00 - 13.45	U						13 —
		13.45 13.50 - 14.00	D B						<u>-</u> - -
		14.00 14.00	D	N=28 (3,4/6,7,7,8	3)				14 —
		14.50 - 15.00	В						
		15.00 15.00 - 15.45	ES U						15 —
		15.45	D						
		16.00 - 16.50	В						16 —
		16.50 16.50	D	N=30 (4,4/7,7,8,8	(1)				17 —
		17.50 - 18.00	В						
		18.00 - 18.45	U						18 —
		18.45	D						
		19.00 - 19.50	В						19 -
		19.50 19.50	D	N=32 (4,4/7,8,8,9)				
		20.00	ES					Continued on next sheet	20 -

Remarks

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.5ppm, 2.0m - 1.8ppm, 3.0m - 1.2ppm, all other PID results 0 - 0.2ppm.

	DUNDTE CONSULTING		Y PRI		Project No.	Во	rehc	ole Log 530044.11 - 185509.66	Borehole No. BH19 Sheet 3 of 4 Hole Type
Locati		LONDON		<u> </u>	SRO-20291		Level:	41.00	CP Scale 1:50
Client	:	WATERMA	AN				Dates:	05/02/2021 - 09/02/2021	Logged By BM
Well	Water Strikes		and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	·
		, ,	31						=
		20.50 - 21.00	В						
		21.00 - 21.45	U						21 —
		21.45	D						
		22.00	В						22 —
		22.50 22.50	D	N=32 (4,5/7,8,8,9)					
		23.50 - 24.00	В						23 —
		24.00 - 24.45	U						24 —
		24.45	D						
		25.00 25.00 - 25.50	ES B						25 — -
		25.50 25.50	D	N=36 (5,5/8,9,9,10))				
									26 —
		26.50 - 27.00	В						
		27.00 - 27.45	U						27 —
		27.45	D						
		28.00 - 28.80	В						28 — - -
		28.50 28.50	D	N=37 (5,6/8,8,10,11)				29
		29.50 - 30.00	В						29 -
		30.00	ES					Continued on next sheet	30

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.5ppm, 2.0m - 1.8ppm, 3.0m - 1.2ppm, all other PID results 0 - 0.2ppm.

Project Name: HOLLOWAY PRISON Project No. GRO-20291 Co-ords: 530044.11 - 185509.66 F Location: LONDON Level: 41.00	neet 4 of 4 Hole Type CP Scale 1:50 ogged By BM
Location: LONDON	Scale 1:50 ogged By BM
Water Strikes Samples and In Situ Testing Depth (m) Type Results Depth (m) Stratum Description	ogged By BM
Strikes Depth (m) Type Results (m) Company 31 —	
30.00 - 30.45 U	31 —
30.45 D = = = = = = = = = = = = = = = = = =	31 —
31.00 - 31.50 B	31 —
	_
31.50 D N=39 (6,7/8,9,11,11)	- - - - -
	32 —
32.50 - 33.00 B	- - -
33.00 - 33.45 U	33 -
33.45 D = =================================	
34.00 - 34.50 B	34 -
34.50 D N=46 (7,9/10,10,13,13)	-
35.00 ES	35 —
36.00 - 36.45 U	36
36.45 D =	-
37.00 - 37.50 B	37 —
37.50 D N=50 (9,10/50 for	
295mm)	38 —
38.50 - 39.00 B	
39.00 D N=50 (9,12/50 for 245mm)	39 -
40.00 ES 40.00 1.00 End of borehole at 40.00 m	

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 4. PID results: 0.5m - 0.5ppm, 2.0m - 1.8ppm, 3.0m - 1.2ppm, all other PID results 0 - 0.2ppm.

	<u>a</u>								Borehole N	lo.
GRO	DUNDTE	СН				Bo	reho	ole Log	BH20	
	CONSULTING				Project No.				Sheet 1 of Hole Type	
Projec	t Name:	HOLLOWA	AY PRI		GRO-20291		Co-ords:	530080.81 - 185488.97	CP	
Locati	on:	LONDON					Level:	40.92	Scale 1:50	
Client	:	WATERMA	AN				Dates:	20/01/2021 - 20/01/2021	Logged B BM	У
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Grey slightly san	dy slightly	_
		0.50 0.50	D ES		0.40	40.52		clayey subangular medium to coars mixed lithologies including quartzite MADE GROUND: Soft brown slight gravelly clay. Gravel is subangular t	ly cobbly fine to coarse	-
		1.00	ES					of mixed lithologies including brick, quartzite and concrete. Cobbles are to subrounded of brick.	chert, e subangular	1 =
		1.20 1.20	D ES	N=9 (1,1/2,2,2,3)						_
		1.50 1.50 - 2.00	B		1.80	39.12				
		2.00 2.00 - 2.45	ES U		1.00	00.12		Firm brown CLAY.		2 -
		2.50 - 3.00	В							
		3.00 3.00 3.00	D ES	N=13 (2,2/3,3,4,3	,					3 -
		3.50 - 4.00	В	(2,2,0,0,1,0	,					_
		4.00 4.00 - 4.45	ES U							4 -
		4.50 - 5.00	В							
		5.00 5.00 5.00 5.50 - 6.00	D ES	N=17 (2,3/3,4,5,5)			Firm to stiff from 5.30m bgl.		5 -
		5.50 - 6.00	В							
		6.00 - 6.45	U							6 -
		6.50 - 7.00	В				<u> </u>			
		7.00 7.00	D	N=23 (4,5/5,5,6,7)					7 —
		7.50 - 8.00	В							-
		8.00 - 8.45	U							8 —
		8.50 - 9.00	В							
		9.00		N=24 (4,5/5,6,6,7)			Dark brown from 9.00m bgl.		9 -
		9.50 - 10.00	В							
		10.00	ES					Continued on next sheet		10 -
Rema	rks									

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No BH20 Sheet 2 of	
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530080.81 - 185488.97	Hole Type CP	
Locati	on:	LONDON			0110 20201		Level:	40.92	Scale 1:50	
Client:		WATERMA	AN				Dates:	20/01/2021 - 20/01/2021	Logged By BM	/
Well	Water Strikes		1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
X//XX//	Cuntoo	Depth (m) 10.00 - 10.45	Type U	Results	()	()				
		10.50 - 11.00	В		10.50	30.42		Stiff grey CLAY.		
		11.00 11.00	D	N=27 (5,5/6,6,7,8)					11 -
		11.50 - 12.00 12.00 - 12.45	B U							12 —
		12.50 - 13.00	В							
		13.00 13.00	D	N=31 (5,6/6,8,8,9)					13 —
		13.50 - 14.00	В							
		14.00 - 14.45	U							14 =
		14.50 - 15.00	В							
		15.00 15.00 15.00	D ES	N=32 (5,6/6,8,9,9)					15 -
		16.00 - 16.50	В							16 —
		16.50 - 16.95 17.00 - 17.50	U B							- - - - 17 —
		17.00 - 17.50	В							
		18.00 18.00	D	N=34 (5,7/7,8,9,10))					18 —
		19.00 - 19.20	В							- 19 —
		19.50 - 19.95	U							
Rema	rke	20.00	ES		20.00	20.92		End of borehole at 20.00 n	1	20 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings and bentonite. 4. All PID results 0 - 0.2ppm.

	<u> </u>								Borehole No.
	9					Bo	reho	ole Log	BH21
GRO	OUNDTE	CH					. •	3.3 = 3	Sheet 1 of 4
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530125.52 - 185460.98	Hole Type CP
Locati	on:	LONDON					Level:	40.27	Scale 1:50
Client:		WATERMA	λN				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water	Samples	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	
****	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona		
		0.50	ES		0.20	40.07		MADE GROUND: Grass over dark I gravelly sandy clay topsoil. Gravel is subrounded fine to coarse of mixed including brick, concrete and chert. MADE GROUND: Red brown slight gravelly medium to coarse sand. Gr	s angular to lithologies ly clayey ravel is
		1.00 1.00 1.20 1.20	D ES D	N=7 (1,1/1,2,2,2)	1.40	38.87		angular to subrounded fine to coars lithologies including brick, chert, qua rare concrete. Occasional subround of brick.	artzite and
		1.50 1.50 - 2.00	D B	14-7 (1,1/1,2,2,2,2	,			Soft orange brown CLAY.	
		2.00 2.00 - 2.45	ES U					Soft to firm from 2.20m bgl.	2 —
		2.50 - 3.00	В						
		3.00 3.00 3.00	D ES	N=14 (2,3/3,3,4,4	4)			Firm from 3.00m bgl.	3 -
		3.50 - 4.00	В						
		4.00 4.00 - 4.45	ES U						4 -
		4.50 - 5.00	В						-
		5.00 5.00 5.00 5.50 - 6.00	D ES B	N=19 (3,3/4,5,5,5	5)			Firm to stiff from 5.00m bgl.	5 -
		6.00 - 6.45	U						6 —
		6.50 6.50 - 7.00	D B						
		7.00 7.00	D	N=19 (3,4/4,5,5,5	5)				7 -
		8.00 - 8.45	U						8 —
		8.50 8.50 - 9.00	D B						
		9.00 9.00	D	N=24 (4,5/5,5,6,8	3)				9 -
		9.50 - 10.00	В						
Rema		10.00	ES					Continued on next sheet	10 -

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 14.90m - 15.20m (40 mins) and 28.20m - 28.40m (30 mins). 4. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 5. PID results: 4.0m - 1.6ppm, 5.0m - 0.7ppm, 15.0m - 0.7ppm, all other PID results 0 - 0.2ppm.

GRO	OUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole N BH21 Sheet 2 of	
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530125.52 - 185460.98	Hole Type CP	;
Locati	on:	LONDON					Level:	40.27	Scale 1:50	
Client	:	WATERMA	AN				Dates:	27/01/2021 - 29/01/2021	Logged By BM	y
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n	
		10.00 - 10.45	U	rtodato						
		10.50 10.50 - 11.00	D B		10.50	29.77		Stiff grey CLAY.		
		11.00 11.00	D	N=25 (5,6/6,6,6,7)						11 -
		11.50 - 12.00	В							
		12.00 - 12.45	U							12 -
		12.50 12.50 - 13.00	D B							-
		13.00 13.00	D	N=27 (5,6/6,6,7,8)						13 -
		13.50 - 14.00	В							
		14.00 - 14.45	U				<u> </u>			14 =
		14.50 14.50 - 15.00	D B							
		15.00 15.00 15.00	D ES	N=50 (9,11/50 for 215mm)						15 -
		15.50 - 16.00	В	21311111)			<u> </u>			
		16.00 - 16.50	В							16 -
		16.50 - 16.95	U							
		17.00 17.00 - 17.50	D B							17 -
		18.00 18.00	D	N=33 (7,7/7,8,8,10)					18 —
		19.00 - 19.50	В							19 —
		19.50 - 19.95	U							
Rema		20.00	D					Continued on next sheet		20 —

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 14.90m - 15.20m (40 mins) and 28.20m - 28.40m (30 mins). 4. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 5. PID results: 4.0m - 1.6ppm, 5.0m - 0.7ppm, 15.0m - 0.7ppm, all other PID results 0 - 0.2ppm.

									Borehole N	lo.
GRO	G DUNDTE	CH CH				Bo	rehc	ole Log	BH21	
G,	CONSULTING	CIT							Sheet 3 of	
Projec	t Name:	HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530125.52 - 185460.98	Hole Type CP	Э
Locati	on:	LONDON					Level:	40.27	Scale 1:50	
Client:	:	WATERMA	۱N				Dates:	27/01/2021 - 29/01/2021	Logged By BM	у
Well	Water Strikes			In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		•		
		20.00	ES				F			-
		20.50 - 21.00	В							
		21.00 21.00	D	N=36 (7,8/8,8,10,10						21 -
										- - -
		22.00 - 22.50	В							22 -
		22.50 - 22.95	U							-
		23.00 23.50 - 24.00	D B							23 -
		24.00	D							24 —
		24.00		N=43 (8,9/9,9,12,13						- - - - -
		25.00 25.00 - 25.50	ES B							25 —
		25.50 - 25.95	U							- - - -
		26.00	D							26 -
		26.50 - 27.00	В							- - - -
		27.00 27.00	D	N=48 (9,9/9,11,13,15)						27
		28.00 - 28.50	В							28 -
		28.50 28.50	D	N=50 (9,11/50 for 250mm)						29 -
		29.50 - 30.00	В							-
Rema		30.00	D					Continued on next sheet		30 -

^{1.} Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 14.90m - 15.20m (40 mins) and 28.20m - 28.40m (30 mins). 4. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 5. PID results: 4.0m - 1.6ppm, 5.0m - 0.7ppm, 15.0m - 0.7ppm, all other PID results 0 - 0.2ppm.

GRO	G DUNDTE CONSULTING	СН				Во	reho	ole Log	Borehole No. BH21 Sheet 4 of 4
Projec	t Name:	: HOLLOWA	Y PRI		Project No. GRO-20291		Co-ords:	530125.52 - 185460.98	Hole Type CP
Locati	on:	LONDON		1			Level:	40.27	Scale 1:50
Client:		WATERMA	λN				Dates:	27/01/2021 - 29/01/2021	Logged By BM
Well	Water Strikes			n Situ Testing	Depth	Level (m)	Legend	Stratum Description	ı
	Suikes	Depth (m) 30.00	Type ES	Results	(m)	(111)			
. 1888 - 1888 1888 - 1888		30.00	LS	N=50 (9,13/50 for 230mm)					- - - -
		31.00 - 31.50	В						31 -
		31.50 31.50	D	N=50 (12,13/50 for 235mm)	r				32 —
		32.50 - 33.00	В						- - -
		33.00 33.00	D	N=49 (9,9/11,12,13,13)					33 -
		34.00 - 34.50	В						34 -
		34.50 34.50	D	N=50 (9,10/50 for 290mm)					= = = = = = = = = = = = = = = = = = = =
		35.00	ES	,					35 -
		35.50 - 36.00	В						
		36.00 36.00	D	N=50 (10,11/50 for 280mm)	г				36 — - - - -
		37.00 - 37.50	В						37 -
		37.50 37.50	D	N=50 (11,13/50 for 250mm)	r				- - - - - - - - - -
		38.50 - 39.00	В						38
		39.00 39.00	D	N=50 (12,13/50 for 210mm)	r				39 -
		39.50 - 40.00	В	~10mm)					
	rks	40.00	ES		40.00	0.27	<u> </u>	End of borehole at 40.00 n	40

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Chiselling from 14.90m - 15.20m (40 mins) and 28.20m - 28.40m (30 mins). 4. Installation to 35.00m bgl, 31.00m plain pipe and 4.00m slotted pipe. 5. PID results: 4.0m - 1.6ppm, 5.0m - 0.7ppm, 15.0m - 0.7ppm, all other PID results 0 - 0.2ppm.

	G					Po	roh		Borehole N	
GRO	DUNDTE	СН				DU	len	ole Log	WS01 Sheet 1 of	
Projec	t Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530094.50 - 185670.39	Hole Type	
Locati	on:	LONDON					Level:	35.92	Scale 1:25	
Client:	:	WATERM	AN				Dates:	01/02/2021 - 01/02/2021	Logged B	у
Well	Water Strikes	Sample: Depth (m)	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.00 - 1.20 0.20	B	resuits	0.10	35.82		MADE GROUND: Tarmac. MADE GROUND: Brown sandy sub medium to coarse gravel of limestor		-
		0.50	ES		0.40	35.52		MADE GROUND: Soft brown grave clay. Gravel is angular to subangula lithologies including brick and chert. Cobbles of brick encountered at 0.5m bgl.	lly reworked r of mixed	-
		1.00 1.20	D	N=8 (1,2/1,2,2,3)	1.05	34.87		MADE GROUND: Very soft to soft d black ashy slightly gravelly clay. Gra angular to subangular fine of brick.	avel is	1 —
		1.50	ES					hydrocarbon odour. Becoming firm from 1.5m bgl.		
		2.00 2.00 2.00	D ES	N=14 (2,2/3,3,4,4	2.20	33.72		Firm to stiff brown CLAY.		2 —
		2.50	ES							-
		3.00 3.00	D	N=15 (2,3/3,3,4,5)			Slightly sandy at 3.0m bgl.		3 —
		3.50	ES							
		4.00 4.00	D	N=19 (3,3/4,4,5,6	4.00	31.92		End of borehole at 4.00 m		4 -
										5 —

Remarks

1. Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole broken out to 0.1m bgl. 3. No groundwater encountered. 4. Monitoring installation to 4.0m bgl. 1.0m plain, 3.0m slotted. 5. PID results: 1.5m - 0.3ppm, 2.0m - 3.8ppm, all other PID results 0 - 0.2ppm.

									Borehole N	lo.
GPC	S DUNDTE	CH				Во	reho	ole Log	WS02	2
UNC	CONSULTING	CH							Sheet 1 of	1
Projec	t Name:	HOLLOW	AY PRI	SUM	Project No. GRO-20291		Co-ords:	530144.32 - 185664.63	Hole Type WS	Э
Locati	on:	LONDON					Level:	34.93	Scale 1:25	
Client:		WATERMA	AN				Dates:	01/02/2021 - 01/02/2021	Logged B CW	у
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	***************************************	·		
		0.20 - 1.20	В		0.15 0.35	34.78 34.58		MADE GROUND: Tarmac. MADE GROUND: Reinforced conci MADE GROUND: Brown slightly sa		- - - - -
		0.50	ES					subangular medium to coarse grave limestone.	el of	-
•		1.00 1.00	D ES		0.95	33.98		MADE GROUND: Soft brown grave clay. Gravel is angular to subangula	elly reworked	1 —
		1.20		N=7 (1,1/2,2,1,2)	1.20	33.73		clay. Gravel is angular to subangula lithologies including brick and chert Firm brown CLAY.		-
								Becoming mottled grey from 1.5m bgl.		- - - - -
		2.00 2.00 2.00	D ES	N=8 (1,1/1,2,3,2)						2 —
		3.00 3.00 3.00	D ES	N=12 (1,2/2,3,3,4)					3
		4.00 4.00 4.00	D ES	N=24 (3,4/5,5,6,8	4.00	30.93		End of borehole at 4.00 m		4 —
Rema										5 —

^{1.} Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole broken out to 0.35m bgl. 3. Groundwater encountered perched in Made Ground. 4. Relict clay pipe encountered at 0.6m bgl. 5. Monitoring installation to 4.0m bgl. 1.0 plain, 3.0m slotted. 6. All PID results 0 - 0.2ppm.

	<u> </u>								Borehole N	lo.
GPC	U INIDTE	⊂IJ				Boi	reho	ole Log	WS03	;
GRU	OUNDTE CONSULTING	LH 							Sheet 1 of	1
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530163.95 - 185576.36	Hole Type WS	Э
Locati	on:	LONDON					Level:	34.95	Scale 1:25	
Client:		WATERMA	4N				Dates:	01/02/2021 - 01/02/2021	Logged By CW	у
Well	Water	Samples	s and l	In Situ Testing	Depth	Level	Legend	Stratum Description		
VVEII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legena		<u></u>	
		0.00 - 1.00	В		0.05	34.90		MADE GROUND: Tarmac. MADE GROUND: Reinforced concr	rete	-
		0.30	ES		0.25	34.70		MADE GROUND: Brown sandy sub medium to coarse gravel of limestor	oangular	-
					0.50	34.45		MADE GROUND: Soft brown grave	lly reworked	
		0.60	ES		0.70	34.25		clay. Gravel is angular to subangula lithologies including brick and chert. Soft to firm brown CLAY.	r of mixed	-
		1.00 1.00	D ES							1 —
		1.20		N=8 (1,1/2,2,2,2)	,					_
										=
										_
										_ _ _
										_
							<u></u>			_
		2.00	D							2 —
		2.00 2.00	ES	N=14 (1,2/3,3,4,4	,			Becoming stiff and mottled grey from 2.0m l	ogi.	
		2.00		14 (1,2/3,3,4,4	'		<u> </u>			_
							E===			_
										_
										_
										_
							<u> </u>			_
		3.00 3.00	D ES					Lenses of sand at 3.0m bgl.		3 —
		3.00	LS	N=20 (2,3/4,4,6,6)					_
										=
										_
							<u> </u>			_
										-
										_
		4.00	D		4.00	30.95				4 -
		4.00	ES	N 04 /0 0/4 5 0 0		30.93		End of borehole at 4.00 m		4 -
		4.00		N=21 (3,3/4,5,6,6)					_
										_
										_
										5 —

Remarks

1. Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole broken out to 0.25m bgl. 3. No groundwater encountered. 4. Backfilled with arisings. 5. PID results: 1.0m - 0.6ppm, 4.0m - 0.3ppm, all other PID results 0 - 0.2ppm.

	ര								Borehole N	
GRO	DUNDTE	СН				Bo	reho	ole Log	WS04	
Projec	t Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530140.04 - 185492.55	Sheet 1 of Hole Type WS	
Locati	on:	LONDON		I			Level:	38.14	Scale 1:25	
Client:		WATERMA	AN				Dates:	02/02/2021 - 02/02/2021	Logged By	у
Well	Water Strikes	Sample: Depth (m)	s and	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.10	ES	results	0.15	37.99		MADE GROUND: Grass over dark clayey gravelly sand topsoil. Grave subangular fine to coarse of mixed	lis	
		0.30	ES					including chert and quartzite. MADE GROUND: Orange medium	-	
		0.50	ES		0.40	37.74		sand and subangular to rounded m coarse gravel of mixed lithologies in	edium to	
		0.65 - 1.00	В		0.65	37.49		and quartzite. MADE GROUND: Soft brown grey gravelly clay. Gravel is subangular subrounded fine to coarse of mixed	to	 - -
		1.00	ES					including chert, quartzite, brick and Soft to firm pale brown CLAY.		1 -
										' -
		1.20 1.20	D	N=8 (1,2/1,2,2,3)						-
										_
										-
										_
		2.00 2.00 2.00	D ES	N=42 (2 2/2 2 2 4						2 —
		2.00		N=13 (2,2/3,3,3,4)				Firm and mottled grey from 2.30m bgl.		-
								Timi and motaed grey noni 2.30m bgi.		-
										- -
		3.00	D							3 -
		3.00 3.00	ES	N=37 (3,3/4,14,11,8	3)			Firm to stiff from 3.20m bgl.		-
								Band of claystone between 3.35m and 3.45	ām bgl.	-
								J		
										- - -
//////////////////////////////////////		4.00 4.00 4.00	D ES	N=24 (4,3/5,6,6,7)	4.00	34.14		End of borehole at 4.00 m		4 —
		1.00		7. = . (1,0,0,0,0,0,7)						
										-
										5 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings. 4. All PID results 0 - 0.2ppm.

									Borehole N	lo.
GRO	S DUNDTE	CH				Bo	reho	ole Log	WS05	;
Unic	CONSULTING						1		Sheet 1 of	
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530129.71 - 185528.64	Hole Type WS	Э
Locati	on:	LONDON					Level:	38.00	Scale 1:25	
Client:		WATERMA	AN				Dates:	02/02/2021 - 02/02/2021	Logged B BM	у
Well	Water	Sample	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Grass over brow		
		0.10	ES		0.15	37.85		sandy gravelly clay topsoil. Gravel is subangular fine to coarse of mixed including brick, concrete, chert and MADE GROUND: Soft pale brown gravel is subangular to subrounded coarse of mixed lithologies including quartzite, brick and rare ash.	s angular to lithologies quartzite. gravelly clay. I fine to	
		0.75 - 1.50	В		0.75	37.25		Soft to firm pale brown CLAY.		-
		1.00 1.20 1.20 2.00 2.00 2.00	ES D D ES	N=20 (2,3/4,4,5,7 N=20 (4,4/3,4,6,7				Firm from 1.40m bgl. Firm to stiff and mottled grey from 2.40m bg	y l.	2 —
		3.00 3.00 3.00 4.00 4.00 4.00	D ES	N=22 (3,4/4,5,6,7 N=22 (3,4/4,5,6,7	4.00	34.00		End of borehole at 4.00 m		3
Domo										5 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 4.00m bgl, 1.00m plain pipe and 3.00m slotted pipe. 4. All PID results 0 - 0.2ppm.

									Borehole N	lo.
	GROUNDTECH				Ro	reho	ole Log	WS06	;	
GRO	OUNDTE	CH						old Log	Sheet 1 of	
Projec	t Name:	HOLLOW	AY PRI	SON	Project No.		Co-ords:	530098.96 - 185557.06	Hole Type	
	erranio.	11022011			GRO-20291		00 0140.	100001.00	WS Scale	
Locati	on:	LONDON					Level:	37.63	1:25	
Client:		WATERMA	AN				Dates:	02/02/2021 - 02/02/2021	Logged By BM	y
Well	Water	-		n Situ Testing	Depth	Level	Legend	Stratum Description	1	
X//XX///	Strikes	Depth (m)	Туре	Results	(m)	(m)	J	MADE GROUND: Grass over dark		
		0.15 0.50 0.50 - 1.00	ES ES B		0.20	37.43		to subrounded fine to coarse of mixincluding brick, chert, quartzite, ash MADE GROUND: Pale brown medi subangular to rounded fine to coarse mixed lithologies including chert, quand concrete. Occasional subangul subrounded cobbles of brick and co	is subangular is ded lithologies a and wood. ium sand and ise gravel of uartzite, brick lar to	
		1.00	ES							1 -
		1.20 1.20	D	N=48 (5,6/6,10,12,20)				Locally clayey from 1.30m bgl.		- - - - -
		1.50	ES							=
					1.75	35.88				- - -
					1.75	33.00		Firm brown CLAY.		=
		2.00 2.00 2.00	D ES	N=12 (2,2/2,3,3,4	2.00	35.63		End of borehole at 2.00 m		2
										4 —
										5 —

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Hole terminated at 2.00m bgl due to barrel becoming stuck and unable to be removed after the 2.00m to 3.00m drilling run. 4. All PID results 0 - 0.2ppm.

									Borehole N	0.
_	G					Boi	reho	ole Log	WS07	A
GRO	OUNDTE	CH						010 209	Sheet 1 of	1
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530079.00 - 185594.48	Hole Type WS)
Locati	on:	LONDON					Level:	35.95	Scale 1:25	
Client:		WATERMA	AN				Dates:	01/02/2021 - 01/02/2021	Logged By CW	y
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (m) 0.00 - 1.20 0.05	Type B ES	Results	0.10	35.85		MADE GROUND: Brown slightly sa clay topsoil. Gravel is subangular fir	ne to coarse	
					0.25	35.70		of mixed lithologies including brick, and plastic.	wood, chert	
								MADE GROUND: Concrete. MADE GROUND: Soft brown grave Gravel is angular to subangular of r	nixed	
		0.60	ES					lithologies including brick and chert		=
					0.90	35.05		Firm brown mottled grey CLAY.		- - -
		1.00 1.00	D ES					Tim blown motion grey of At.		1 -
		1.20		N=12 (1,2/3,3,3,3)					
										=
										- - -
		2.00	D							2 =
		2.00 2.00	ES	N=18 (2,3/4,3,5,6	5)					- -
										=
								Becoming stiff from 2.0m bgl.		_ _ _
										-
		3.00	D							3 —
		3.00 3.00	ES	N=20 (2,4/4,4,6,6	5)					
										- - -
		4.00	D		4.00	31.95				4 —
		4.00 4.00	ES	N=22 (3,4/5,5,6,6				End of borehole at 4.00 m		· =
										=
Rema	rko									5 —

Remarks

1. Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole relocated 2.0m east due to pipe encountered at 0.9m bgl. 3. No groundwater encountered. 4. All PID results 0 - 0.2ppm.

	<u></u>								Borehole N	lo.
GDO	GROUNDTECH CONSULTING				Bo	reho	ole Log	WS08	3	
GAC	CONSULTING	СП					1		Sheet 1 of	
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530078.15 - 185596.62	Hole Type WS	Э
Locati	on:	LONDON					Level:	35.84	Scale 1:25	
Client:	:	WATERMA	AN				Dates:	02/02/2021 - 02/02/2021	Logged B	У
Well	Water	Samples	s and l	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend			
		0.00 - 1.20 0.05	B ES		0.10	35.74		MADE GROUND: Brown slightly sa clay topsoil. Gravel is subangular fir of mixed lithologies including brick, chert. MADE GROUND: Soft brown grave clay. Gravel is angular to subangula lithologies including brick and chert Cobbles of brick and concrete present betw 1.2m bgl.	ne to coarse wood and elly reworked ar of mixed	-
		1.00 1.00 1.20	D ES	N=9 (1,1/1,2,3,3))					1 —
		1.50	ES		1.70	34.14		Clinker and ash between 1.4m and 1.6m by		-
		2.00 2.00 2.00	D ES	N=20 (3,3/4,4,6,6	5)			Film to sun brown motured grey CLA	11.	2 —
		3.00 3.00 3.00	D ES	N=20 (3,4/4,4,6,6	5)					3 —
		4.00 4.00 4.00	D ES	N=25 (4,5/5,5,7,8	4.00	31.84		End of borehole at 4.00 m		4
Rema	rke									5 —

Remarks

1. Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole relocated 3.0m west due to services encountered in previous trial pits. 3. No groundwater encountered. 4. Monitoring installation to 4.0m bgl. 1.0m plain pipe 3.0m slotted. 5. All PID results 0 - 0.2ppm.

	ROUNDTECH CONSULTING Ject Name: HOLLOWAY PRISON					Во	reho	ole Log	Borehole N WS09 Sheet 1 of)
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530049.54 - 485520.41	Hole Type	
Locatio	on:	LONDON			<u> </u>		Level:	40.72	Scale 1:25	
Client:		WATERMA	ΔN				Dates:	02/02/2021 - 02/02/2021	Logged B BM	у
Well	Water Strikes	-	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.15 0.50 0.50 - 1.00	ES ES B	Trocate	0.20	40.52		MADE GROUND: Brown slightly sa clay topsoil. Gravel is subangular fi of mixed lithologies including brick MADE GROUND: Very soft pale bricky. Gravel is subangular fine to comixed lithologies including brick, we quartzite and rare concrete. Occasi subrounded cobbles of brick.	ne to coarse and quartzite. own gravelly oarse of ood, chert,	
					0.70	40.02		Soft to firm friable pale brown CLA	/ .	
		1.00	ES					Firm and mottled grey from 1.10m bgl		1 -
		1.20 1.20	D	N=21 (2,3/3,4,6,8)					-
		1.80	ES					Firm to stiff firm 1.60m bgl.		
		2.00 2.00	D	N=27 (3,4/5,6,7,9)					2 -
		2.70	ES							
		3.00 3.00	D	N=31 (4,4/6,7,8,10))			Stiff from 3.00m bgl.		3 -
		3.70	ES							-
		4.00 4.00	D	N=27 (4,6/6,6,7,8	4.00	36.72		End of borehole at 4.00 m		4 -
Remar		it to 1 2000 ha	-			Destrille	d with a sign	ings 4 All PID results 0 - 0 2ppm		5

Remarks

1. Hand dug pit to 1.20m bgl. 2. No groundwater encountered. 3. Backfilled with arisings. 4. All PID results 0 - 0.2ppm.

									Borehole N	lo.
	9					Bo	reho	ole Log	WS10)
GRC	OUNDTE(CH					. •		Sheet 1 of	1
Projec	t Name:	HOLLOWA	AY PRI		Project No. GRO-20291		Co-ords:	530025.02 - 185550.18	Hole Type WS	e
Locati	on:	LONDON					Level:	41.21	Scale 1:25	
Client:		WATERMA	AN				Dates:	02/02/2021 - 02/02/2021	Logged B	у
Well	Water Strikes		1 1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	Depth (m) 0.00 - 1.20	Type B	Results	(111)	(111)	***********	MADE GROUND: Brown slightly sa	ndy gravelly	
		0.05	ES		0.10	41.11		clay topsoil. Gravel is subangular to coarse of mixed lithologies including and chert. MADE GROUND: Soft brown grave Gravel is angular to subangular of n lithologies including brick and chert. Firm to stiff brown mottled grey CLA	fine to g brick, wood lly clay. nixed	
		1.00 1.00 1.20	D ES	N=11 (1,1/2,3,3,3)			Filli to suil blown motiled grey CLF	ν.	1 —
		2.00 2.00 2.00	D ES	N=14 (2,2/3,3,4,4)			Becoming stiff from 1.5m bgl.		2 —
		3.00 3.00 3.00	D ES	N=21 (2,3/4,5,6,6)			Becoming very stiff from 3.0m bgl.		3 -
		4.00 4.00 4.00	D ES	N=25 (3,4/5,6,6,8	4.00	37.21		End of borehole at 4.00 m		4 —
Remai										5 —

Remarks

1. Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole broken out to 0.25m bgl. 3. No groundwater encountered. 4. Monitoring installation to 4.0m bgl. 1.0m plain pipe 3.0m slotted. 5. PID results: 3.0m - 0.6ppm, all other PID results 0 - 0.2ppm.

GRC	GROUNDTECH consulting ject Name: HOLLOWAY PRISON					Во	reho	ole Log	Borehole N WS11 Sheet 1 of	
Projec	t Name:	HOLLOW	AY PRI	C()KI	Project No. GRO-20291		Co-ords:	530118.90 - 185669.20	Hole Type WS	е
Location	on:	LONDON					Level:	35.18	Scale 1:25	
Client:		WATERM	AN				Dates:	02/02/2021 - 02/02/2021	Logged B BM	У
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	Cunco	Depth (m)	Туре	Results	()	(,,,		MADE GROUND: Grey reinforced	concrete.	_
		0.30 0.50 0.50 - 1.00	ES ES B		0.30 0.40	34.88 34.78		MADE GROUND: Pale brown oran coarse sand and subrounded fine t gravel of mixed lithologies including quartzite. MADE GROUND: Very soft brown in the control of the control	o coarse g chert and	-
		1.00	ES D		0.85	34.33		gravelly clay. Gravel is subangular subrounded fine to coarse of mixed including chert, quartzite, concrete, rare ash. Soft brown mottled grey CLAY.	l lithologies	1 —
		1.20		N=7 (1,1/1,1,2,3)				Soft to firm from 1.50m bgl.		
		2.00 2.00 2.00	D ES	N=13 (1,2/3,3,3,4)					2 -
		3.00 3.00 3.00	D ES	N=17 (3,3/3,4,5,5)			Firm from 2.70m bgl.		3 -
		4.00 4.00 4.00	D ES	N=21 (3,4/4,5,6,6	4.00	31.18		End of borehole at 4.00 m		4 —
Remai										5 —

Remarks

1. Hand excavated pit to 1.20m bgl. 2. No groundwater encountered. 3. Installation to 4.00m bgl, 1.00m plain pipe and 3.00m slotted pipe. 4. PID results: 1.0m - 0.3ppm, 2.0m - 4.1ppm, 3.0m - 8.3ppm, all other PID results 0 - 0.2ppm.

	<u></u>								Borehole N	No.
GRO	SROUNDTECH CONSULTING					Bo	reho	ole Log	WS12	2
Unic	CONSULTING						T		Sheet 1 of	
Projec	t Name:	HOLLOW	AY PRI		Project No. GRO-20291		Co-ords:	530091.89 - 185664.80	Hole Type WS	е
Locati	on:	LONDON					Level:	36.04	Scale 1:25	
Client:	:	WATERM	AN				Dates:	02/02/2021 - 02/02/2021	Logged B	Ву
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	-	ı	
		0.00 - 1.20	В		0.15	35.89		MADE GROUND: Tarmac.		
		0.20	ES		0.10	00.00		MADE GROUND: Grey subangular coarse gravel of limestone.	medium to	
		0.50	ES		0.40	35.64		MADE GROUND: Soft brown grave Gravel is angular to subangular of r lithologies including brick and chert	nixed	
	1	1.00	D							1 -
		1.00	ES							-
		1.20		N=0 (0,0/0,0,0,0)	1.30	34.74				
						•		MADE GROUND: Very soft to soft of black ashy slightly gravelly clay. Gravelly clay.	avel is	-
		1.50	ES		1.55	34.49		angular to subangular fine of brick. Firm to stiff brown CLAY.	Slight odour.	
										_
		2.00	D							2 -
		2.00 2.00	ES	N=11 (1,1/2,2,3,4	.)					-
							E_E_E			_
										_
								Becoming mottled grey and stiff from 2.6m	bal.	-
										-
										-
		3.00 3.00	D ES							3 —
		3.00		N=14 (2,2/3,3,4,4	+)					-
										-
										-
							E-E			-
										_
							E-=-			_
		4.00 4.00	D	N=17 (3,3/4,3,5,5	4.00	32.04		End of borehole at 4.00 m		4 -
										-
										-
										-
										-
										5 —
Rema	rke									

^{1.} Location cleared by specialist utility surveyor prior to breaking ground. 2. Hole broken out to 0.1m bgl. 3. No groundwater encountered. 4. Monitoring installation to 4.0m bgl. 1.0m plain, 3.0m slotted. 5. PID results: 0.2m - 14.9ppm, 0.5m - 0.8ppm, 1.0m - 18.2ppm, 1.5m - 1.6ppm, 3.0m - 29.8ppm, all other PID results 0 - 0.2ppm.

	<u> </u>							Trialpit N	0
CDOL	JNDTECH					Tri	al Pit Log	SA01	
cc	INSULTING						_	Sheet 1 of	f 1
Project Name:		NAY PR	ISON	Project GRO-			Co-ords: 530171.64 - 185610.78 Level: 34.88	Date 26/01/202	21
ocatio	n: LONDO	N					Dimensions (m):	Scale	
Client:	WATERI	MAN					Depth	1:25 Logged	
			n Situ Testing	Donth	Lovel		3.00	CW	
Water	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.06	34.82		MADE GROUND: Tarmac. MADE GROUND: Reinforced concrete.		-
	0.50	ES		0.20 0.25 0.60	34.68 34.63 34.28		MADE GROUND: Brown medium to coarse sar angular to subrounded medium to coarse grave mixed lithologies including chert, slate, quartzite concrete. MADE GROUND: Soft brown slightly gravelly cl Gravel is angular to subangular fine to coarse o and chert. Soft to firm brown mottled grey CLAY.	el of e and lay.	
	1.00	ES	HVP=77				Firm and high strength from 1.1m bgl.		1 —
	2.00	ES	HVP=82						2
	2.00		HVP=85						-
				3.00	31.88		End of pit at 3.00 m		3
									4

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Soakaway test undertaken at 2.1m bgl. 4. All PID results 0 - 0.2ppm.

								Trialpit N	No
	G					Tri	al Pit Log	SA0	2
GRO	UNDTECH ONSULTING					• • •	a	Sheet 1 c	of 1
Projec		NAY PR	ISON	Projec			Co-ords: 530094.00 - 185478.11	Date	
Name:	110220			GRO-	20291		Level: 41.02	26/01/20	
Location	on: LONDO	N					Dimensions (m):	Scale 1:25	
Client:	WATERI	MANI					Depth	Logged	d
			. O'. T				2.60	CW	
Water Strike			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
≶ છ	Depth	Туре	Results	(111)	(''')	*******	MADE GROUND: Grass over brown gravelly	sandy	
	0.10	ES					topsoil. Gravel is angular to subangular fine to brick, concrete and chert.	coarse of	-
				0.30	40.72				
							MADE GROUND: Cobbly fine to medium sand angular to subangular fine to coarse gravel of	and brick and	-
	0.50	ES					concrete. Cobbles are brick and concrete.		-
				0.70	40.32				
	0.80	ES		0.70	10.02		MADE GROUND: Soft brown slightly gravelly Gravel is angular to subangular fine to coarse	clay. of brick	-
				0.90	40.12		and chert. Soft to firm medium strength brown mottled gr	ev CLAY	-
	1.00	ES	HVP=52			E-E-	1	oy ozra.	1 -
							Firm from 1.1m bgl.		-
						<u> </u>			-
						<u> </u>			-
						<u> </u>			-
						<u> </u>			-
						<u> </u>			-
	2.00	ES				<u> </u>			2 -
			HVP=79			<u> </u>	High strength from 2.00m bgl.		- :
						<u> </u>			-
						E==-			-
			HVP=88			<u> </u>			-
				2.60	38.42		End of pit at 2.60 m		-
									-
									-
									3 -
									-
									-
									-
									-
									-
									:
									4 -
									'
									-
									:

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Concrete obstruction encountered on northern edge of pit. 4. Pit extended south 5. Soakaway test undertaken at 2.6m bgl. 6. All PID results 0 - 0.2ppm.

5 -

								Trialpit No
GROL	S JNDTECH					Tri	al Pit Log	SA03
СО	NSULTING			Desir	4 81 -			Sheet 1 of 1
Project Name:	HOLLO	WAY PRI	SON	Project GRO-			Co-ords: 530055.69 - 185622.59 Level: 35.75	Date 27/01/2021
Locatio	n: LONDO	N		Į G. KG			Dimensions	Scale
Locatio	II. LONDO	IN					(m): Depth	1:25
Client:	WATER	MAN					2.30	Logged CW
ke te	Sampl	es and In	Situ Testing	Depth	Level	Legeno	Stratum Description	
Water	Depth	Туре	Results	(m)	(m)	Logonia		
	0.10 0.20	ES ES		0.05	35.70 35.57		MADE GROUND: Tarmac. MADE GROUND: Dark brown black ashy gravmedium sand. Gravel is subangular fine to coatarmac and clinker. MADE GROUND: Grey subangular medium to gravel of limestone.	rse of
	0.70	ES		0.60	35.15 34.95		MADE GROUND: Soft brown slightly gravelly of Gravel is angular to subangular fine to coarse and chert. Firm high strength brown mottled grey CLAY.	alay.
	1.00	ES	HVP=76					1 -
	2.00	ES	HVP=85					2 -
				2.30	33.45		End of pit at 2.30 m	3 -

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. Groundwater perched in granular Made Ground. 3. Soakaway test not undertaken due to groundwater ingress. 4. All PID results 0 - 0.2ppm.

	<u> </u>							Trialpit N	10
GRO	UNDTECH					Tri	al Pit Log	TP01	1
(CONSULTING			Droine	st No		Co-ords: 530132.76 - 185599.39	Sheet 1 o	of 1
Projec Name	t HOLLOV	VAY PR	RISON	Project GRO-			Level: 34.75	26/01/20	21
_ocati	on: LONDO	١		•			Dimensions (m):	Scale 1:25	
Client	: WATERN	MAN					Depth	Logged	ł
		s and I	n Situ Testing	Depth	Level		3.00	CW	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
				0.08 0.16	34.67 34.59		MADE GROUND: Brown block paving. MADE GROUND: Brown medium to coarse san		-
							angular to subrounded medium to coarse grave mixed lithologies including chert, slate, quartzite	l of and	=
	0.50	_		0.36	34.39		concrete. MADE GROUND: Reinforced concrete.		=
	0.50 0.50	B ES				<u> </u>	Firm medium to high strength brown mottled gre	ay CLAY.	=
									=
	1.00 1.00	D ES							1 —
			HVP=65						=
	1.50	В	HVP=78						
						E-E-			-
						<u> </u>			=
	2.00 2.00	D ES				<u> </u>	-		2 -
			HVP=79			<u> </u>			
									=
	2.50	В					-		=
						<u> </u>			
						<u> </u>			=
	3.00 3.00	D ES		3.00	31.75		End of pit at 3.00 m		3 —
	3.00	ES	HVP=84						=
									=
									=
									=
									=
									4 —
									=
									=
									=
									Ξ
									_ =
									5 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hand-held DCP undertaken at 0.55m bgl. 4. Hole terminated at 3.0m bgl. 5. All PID results 0 - 0.2ppm.

CPC	G NINDTECH					Tri	al Pit Log	Trialpit N	
(OUNDTECH CONSULTING						_	Sheet 1 d	of 1
Projec Name	t HOLLO	WAY PRI	SON	Project GRO-			Co-ords: 530077.35 - 185607.53 Level: 35.71	Date 25/02/20	21
Locati	on: LONDO	N		l .			Dimensions (m):	Scale	
Client	: WATER	MAN					Depth	1:25 Logged	d
1			n Situ Testing	Danth	11		3.00	CW	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
_ 0,	<u> </u>			0.07	35.64		MADE GROUND: Tarmac. MADE GROUND: Square brick tiles.		_
				0.17	35.54		MADE GROUND: Reinforced concrete.		-
				0.37	35.34		MADE GROUND: Brown red cobbly sandy angu	ılar to	-
	0.50	ES					subrounded medium to coarse gravel of brick, c	oncrete	-
									-
									-
_	1.00	ES		0.90	34.81		Firm to stiff high strength brown mottled grey CL	_AY.	1 —
			HVP=110						
									-
									-
			HVP=96						-
									-
									=
	2.00	ES							2 -
			HVP=105						-
						<u></u>			=
			HVP=100						-
			1107 - 100						=
									-
						<u></u>			
	3.00	ES	HVP=98	3.00	32.71		End of pit at 3.00 m		3 —
			55						-
									=
									=
									=
									-
									, =
									4 —
									-
									=
									-
									-
									-
									5 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. Groundwater encountered at 0.9m bgl . 3. Hole terminated at 3.0m bgl. 4. All PID results 0 - 0.2ppm.

							Trialpit No	
	G					Tri	ial Pit Log TP03	
	UNDTECH CONSULTING					• • •	Sheet 1 of	
Projec		NAY PR	ISON	Projec			Co-ords: 530052.90 - 185580.55 Date	
Name:	<u> </u>			GRO-	20291		Level: 38.80 27/02/202 Dimensions Scale	:1
Location	on: LONDO	N					(m): 1:25	
Client:	WATERI	MAN					Depth Logged CW	
er (e	Sample	es and I	n Situ Testing	Depth	Level	Lazani		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	·	
	0.20	ES					MADE GROUND: Grass over brown clayey gravelly sandy topsoil. Gravel is angular to subangular fine to coarse of brick, concrete and chert.	
	0.50 0.50	B ES		0.40	38.40		MADE GROUND: Soft brown slightly gravelly clay. Gravel is angular to subangular fine to coarse of brick and chert.	- -
				0.80	38.00		MADE GROUND: Brick floor.	
				1.10	37.70		MADE GROUND: Concrete.	1 -
								-
				1.70	37.10		End of pit at 1.70 m	
								2 -
								-
								3 -
								4 -

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Brick obstruction encountered at 0.8m bgl. 4. Two services encountered at 0.7m and 0.8m bgl parallel to pit. 5. Concrete encountered at 1.1m bgl. 6. Broken out to 1.7m bgl. 7. Pit terminated at 1.7m due to undercutting of services and extensive concrete. 8. All PID results 0 - 0.2ppm.

5 -

	G					T:		Trialpit N	
	DUNDTECH					ırı	al Pit Log	TP04	
Projec	CONSULTING			Projec			Co-ords: 530063.63 - 185555.72	Sheet 1 o	of 1
Name		WAY PRI	SON	GRO-			Level: 38.65	26/02/20	21
_ocati	ion: LONDO	N					Dimensions (m):	Scale 1:25	
Client	:: WATERI	MAN					Depth	Logged	d
	ı		n Situ Testing	<u></u>	Τ	Τ	3.00	CW	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
> 0)	294	.,,,,,					MADE GROUND: Tarmac.		
	0.30	ES		0.20	38.45		MADE GROUND: Cobbly brown fine to medium and angular to subangular fine to coarse gravel and concrete. Cobbles are brick and concrete.	sand of brick	-
	0.60	ES		0.80	37.85		MADE GROUND: Soft brown slightly gravelly re	worked	- - - - -
	0.90	ES		0.97	37.68		clay. Gravel is angular to subangular fine to coabrick and concrete. MADE GROUND: Concrete.	rse of	1 —
	1.50	ES		1.30	37.35		MADE GROUND: Brown compact gravelly coar Gravel is angular to subrounded chert and conc	se sand. rete.	- - - - - -
				1.70	36.95		MADE GROUND: Concrete.		- - - - - -
				2.20	36.45		Soft to firm brown mottled grey CLAY.		2
	2.50	ES							- - - - - - - - - -
				3.00	35.65		End of pit at 3.00 m		3
									4
									5 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hole terminated at 3.0m bgl. 4. All PID results 0 - 0.2ppm.

GROL	G JNDTECH					Tri	al Pit Log Trialpit No TP05	
Project Name:	ONSULTING	WAY PRIS	ON	Project GRO-	t No.		Sheet 1 of Co-ords: 530147.65 - 185617.69 Date Level: 34.81 25/02/202	
Locatio	n: LONDC	DN					Dimensions Scale (m): 1:25	
Client:	WATER	RMAN					Depth Logged CW	
ë ë	Samp	les and In	Situ Testing	Depth	Level	Lagana		
Water	Depth	Туре	Results	(m)	(m)	Legeno		
	0.50 0.50	B ES		0.09	34.72		MADE GROUND: Tarmac. MADE GROUND: Reinforced concrete. MADE GROUND: Soft brown gravelly clay. Gravel is angular to subangular fine to medium of brick.	
	1.00 1.00	D ES	HVP=85	0.95	33.86		Firm to stiff high strength brown mottled grey CLAY.	1 —
	1.50	В	HVP=87					
	2.00 2.00	D ES						2 —
	2.50	В						
	3.00 3.00	D ES		3.00	31.81	<u> </u>	End of pit at 3.00 m	3 —
								4 —
								- - - 5 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hand-held DCP undertaken at 0.5m bgl. 4. Hole terminated at 3.0m bgl. 5. All PID results 0 - 0.2ppm.

								- · · · · ·	1.
GRO	G UNDTECH					Tri	al Pit Log	Trialpit N	6
	t HOLLO	WAY PRI	SON	Project GRO-2			Co-ords: 530022.06 - 185561.06 Level: 41.82	Sheet 1 c Date 26/02/20	
ocatio)N		GRO-	20291		Dimensions	Scale	
Client:							(m): Depth	1:25 Logged	b
			n Situ Testing	Depth	Level		3.00	CW	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
	0.10	ES		0.15	41.67		MADE GROUND: Grass over brown gravelly sa topsoil. Gravel is angular to subangular fine to obrick, concrete and chert. MADE GROUND: Soft brown slightly gravelly reclay. Gravel is angular to subangular fine to coabrick.	coarse of eworked	111111
	0.50 0.50	D ES B		0.95	40.87		Firm medium to high strength brown mottled gr	ev CLAY,	- - - - - - 1 —
	1.00	ES	HVP=66					, o.z	
	1.50	D	HVP=72						
	2.00 2.00	B ES	HVP=74						2 -
	2.50	D	HVP=69						
	3.00 3.00	B ES	HVP=82	3.00	38.82		End of pit at 3.00 m		3
									4 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hole terminated at 3.0m bgl. 4. PID results: 0.5m - 1.3ppm, all other PID results 0 - 0.2ppm.

	G					Tri	al Pit Log	Trialpit N	
GRC	OUNDTECH CONSULTING					• • •		Sheet 1 o	f 1
Projec Name	t HOLLO	NAY PR	ISON	Project GRO-			Co-ords: 530120.59 - 185446.60 Level: 41.04	Date 27/02/202	21
Locati		N		GIVO-	20291		Dimensions	Scale	2 1
							(m): Depth	1:25 Logged	l
Client				I		1	3.00	CW	
Water Strike	Sample Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
≶ Ø	0.20	ES	Results	,			MADE GROUND: Grass over brown gravelly sand topsoil. Gravel is angular to subangular fine to coal brick, concrete and chert.	y rse of	-
	0.50 0.50	B ES		0.25	40.79		MADE GROUND: Red brown gravelly coarse sand Gravel is angular to subangular fine to coarse of br Firm high strength brown mottled grey CLAY.	I. rick.	
	1.00 1.00	D ES	HVP=85						1 —
	1.50	В	HVP=92						
	2.00 2.00	D ES	HVP=95						2 —
	2.50	В	HVP=89						
	3.00 3.00	D ES	HVP=94	3.00	38.04	<u> </u>	End of pit at 3.00 m		3 -
									4 —
									5 —

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hole terminated at 3.0m bgl. 4. All PID results 0 - 0.2ppm.

GRO	C UNDTECH DISSULTING					Tri	al Pit Log Trialpit N TP08 Sheet 1 o	3
Projec Name:	t HOLLO	WAY PRI	SON	Project GRO-2			Co-ords: 530098.06 - 185642.12 Date Level: 35.74 27/02/202	
Locatio	on: LONDC	N					Dimensions Scale (m): 1:25	
Client:	WATER	MAN					Depth Logged CW	
Water Strike	Sampl	es and Ir	n Situ Testing	Depth	Level	Legend		
Stri	Depth	Туре	Results	(m)	(m)	g	MADE GROUND: Grass over brown gravelly sandy	
	0.20	ES		0.30	35.44		topsoil. Gravel is angular to subangular fine to coarse of brick, concrete and chert. MADE GROUND: Soft brown slightly gravelly clay. Gravel is angular to subangular fine to coarse of brick and chert.	
	1.00	ES	HVP=84	0.70	35.04		Firm high strength brown mottled grey CLAY.	1 —
	2.00	ES	HVP=99					2 —
	3.00	ES		3.00	32.74	 	End of pit at 3.00 m	3
								4

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hole terminated at 3.0m bgl. 4. PID results: 0.5m - 1.8ppm, all other PID results 0 - 0.2ppm.

CDO	G					Tri	al Pit Log	Trialpit No)
GRUU	JNDTECH DNSULTING						9	Sheet 1 of	1
Project Name:		WAY PR	ISON	Project GRO-			Co-ords: 530120.58 - 185688.65	Date	4
		ıNı		GRU-	20291		Level: 34.86 Dimensions	25/02/202 ² Scale	ı
ocatio							(m): Depth	1:25 Logged	
Client:	WATER	MAN					3.00	CW	
Water		1 1	n Situ Testing	Depth	Level	Legeno	Stratum Description		
ॐ क्रॅ	Depth	Туре	Results	(m)	(m)		MADE GROUND: Tarmac.		
				0.15	34.71		MADE GROUND: Reinforced concrete.		-
									-
	0.50	ES		0.40	34.46		MADE GROUND: Brown medium to coarse sar angular to subrounded medium to coarse grave		1 1
	0.00						mixed lithologies including chert, slate, quartzite concrete.	e and	-
				0.80	34.06				-
							MADE GROUND: Dark brown black ashy slight gravelly clay. Gravel is angular fine to medium of	of brick	-
	1.00	ES					and clinker.		1 —
									-
				1.35	33.51		Firm medium to high strength brown mottled gre	ey CLAY.	-
			HVP=58			<u> </u>			-
									-
									-
	2.00	ES				<u> </u>			2 -
			HVP=62			<u> </u>			
							-		-
						<u> </u>			-
			HVP=78						-
						<u> </u>			-
						===	<u>-</u>		-
	3.00	ES	HVP=77	3.00	31.86		End of pit at 3.00 m		3 _
			1107-77						-
									-
									-
									-
									-
									-
									4 —
									-
									-
									-
									-
									-
									_

1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Hole terminated at 3.0m bgl. 4. PID results: 1.0m - 3.7ppm, all other PID results 0 - 0.2ppm.

				ı					
	G					T:	al Dit Lac	Trialpit No	
GROL	JNDTECH DISSULTING					ITI	al Pit Log	TP10	
Project				Projec	t No.		Co-ords: 530108.49 - 185690.10	Sheet 1 of Date	f 1
Name:	HOLLO	WAY PR	ISON	GRO-			Level: 35.24	25/01/202	21
Locatio	n: LONDO	N					Dimensions (m):	Scale 1:25	
Client:	WATER	MAN					Depth	Logged	
			n Situ Testing	Danth	Laval		0.70	CW	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	<u>-</u>			0.08	35.16		MADE GROUND: Tarmac. MADE GROUND: Reinforced concrete.		
				0.00	24.00		MADE GROUND. Reinforced concrete.		=
	0.30	ES		0.28	34.96		MADE GROUND: Pale brown medium sand an subangular to rounded medium to coarse grave	el of	=
				0.45	34.79		mixed lithologies including chert, quartzite and i concrete and brick.	rare	-
	0.70	ES		0.70	34.54		MADE GROUND: Concrete obstruction.		=
							End of pit at 0.70 m		-
									1 —
									=
									-
									=
									=
									=
									=
									2 -
									=
									=
									-
									_
									=
									_ =
									3 —
									=
									=
									-
									=
									=
									4 —
									-
									=
									-
									-
									=
									-
									5 —

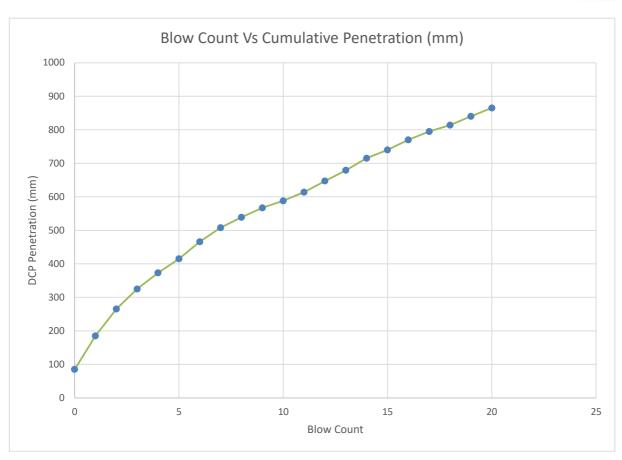
1. Location cleared by specialist utility clearance contractor prior to breaking ground. 2. No groundwater encountered. 3. Concrete obstruction encountered at 0.45m bgl running along the centre of the pit. 4. Hand excavation undertaken along the side of the concrete obstruction to 0.70m bgl, concrete continued down to 0.70m bgl. 5. Hole terminated at 0.70m bgl . 6. All PID results 0 - 0.2ppm.

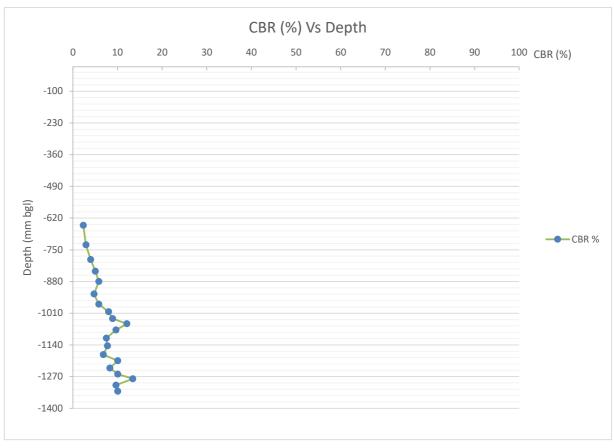
	G					Tri	ol Dit Log	Trialpit N	
GRC	OUNDTECH CONSULTING					111	al Pit Log		
Projec Name	et HOLLOV	VAY PR	ISON	Project GRO-2			Co-ords: 530058.04 - 185674.81 Level: 36.73	Sheet 1 o Date 01/02/20	
Locati	on: LONDON	١					Dimensions	Scale	
Client							(m): Depth 1.00	1:25 Logged BM	d
Water Strike	Sample	s and I	n Situ Testing	Depth	Level	Legeno	Stratum Description		
Wa	Depth	Туре	Results	(m)	(m)	, J	MADE GROUND: Brown slightly sandy gravelly	clay	
	0.20	ES		0.35	36.38		topsoil. Gravel is subangular fine to coarse of m lithologies including brick, wood, chert and plas	iixed tic.	-
	0.50 0.50 0.50 - 1.00 0.75	D ES B ES					MADE GROUND: Soft pale brown gravelly clay is subangular to subrounded fine to coarse of m lithologies including chert and brick.	. Gravel nixed	- - - - - - - - -
				1.00 1.00	35.73 35.73		MADE GROUND: Concrete. End of pit at 1.00 m		1 —
									- - - -
									2
									- - - - - -
									3 -
									- - - - - -
									4 -
									- - - - -
								_	5 —

1. Hole terminated at 1.00m bgl due to concrete obstruction at the base of the trial pit. 2. Backfilled with arisings. 3. All PID results 0 - 0.2ppm. Remarks:

Stability: Stable

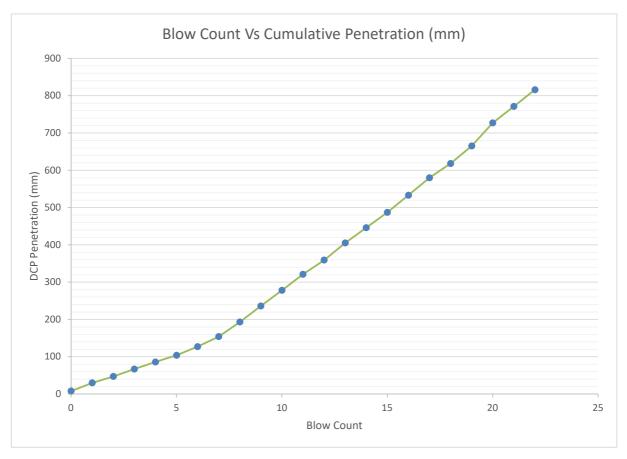
APPENDIX 4 - TRL DCP Test Results

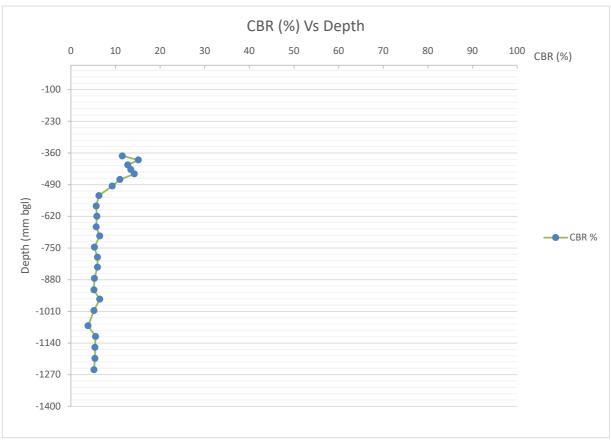

HMP HOLLOWAY GRO-20291 WATERMAN I&E



TP01 Test commenced from 0.55m bgl

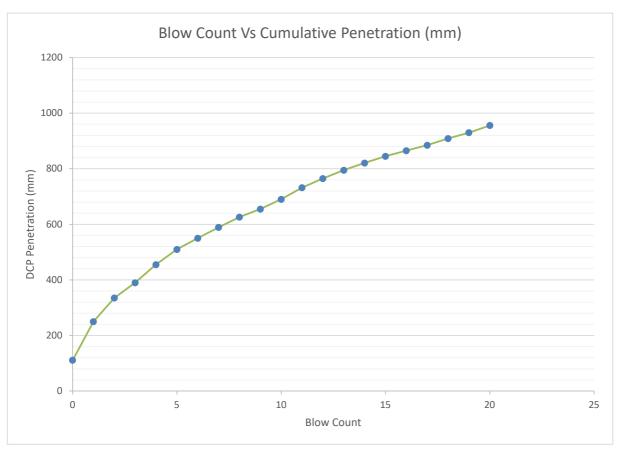
Blow Count	Rod Reading (mm)	Invert Reading (mm bgl)	Penetration index (mm/blow)	CBR %
0	85	-550	0	
1	185	-650	100	2
2	265	-730	80	3
3	325	-790	60	4
4	373	-838	48	5
5	415	-880	42	6
6	466	-931	51	5
7	508	-973	42	6
8	539	-1004	31	8
9	567	-1032	28	9
10	588	-1053	21	12
11	614	-1079	26	10
12	647	-1112	33	7
13	679	-1144	32	8
14	715	-1180	36	7
15	740	-1205	25	10
16	770	-1235	30	8
17	795	-1260	25	10
18	814	-1279	19	13
19	840	-1305	26	10
20	865	-1330	25	10

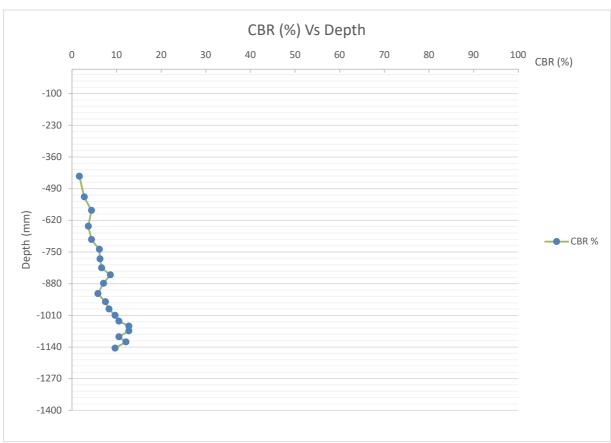

HMP HOLLOWAY GRO-20291 WATERMAN I&E



TP07 Test commenced from 0.35m bgl.

Blow Count	Rod Reading (mm)	Invert Reading (mm bgl)	Penetration index (mm/blow)	CBR %
0	8	-350	0	
1	30	-372	22	12
2	47	-389	17	15
3	67	-409	20	13
4	86	-428	19	13
5	104	-446	18	14
6	127	-469	23	11
7	154	-496	27	9
8	193	-535	39	6
9	236	-578	43	6
10	278	-620	42	6
11	321	-663	43	6
12	359	-701	38	6
13	405	-747	46	5
14	446	-788	41	6
15	487	-829	41	6
16	533	-875	46	5
17	580	-922	47	5
18	618	-960	38	6
19	665	-1007	47	5
20	727	-1069	62	4
21	771	-1113	44	6
22	816	-1158	45	5
23	861	-1203	45	5
24	908	-1250	47	5





TP05 Test commenced from 0.30m bgl.

Blow Count	Rod Reading (mm)	Invert Reading (mm bgl)	Penetration index (mm/blow)	CBR %
0	111	-300	0	
1	250	-439	139	2
2	335	-524	85	3
3	390	-579	55	4
4	455	-644	65	4
5	510	-699	55	4
6	550	-739	40	6
7	589	-778	39	6
8	626	-815	37	7
9	655	-844	29	9
10	690	-879	35	7
11	732	-921	42	6
12	765	-954	33	7
13	795	-984	30	8
14	821	-1010	26	10
15	845	-1034	24	10
16	865	-1054	20	13
17	885	-1074	20	13
18	909	-1098	24	10
19	930	-1119	21	12
20	956	-1145	26	10

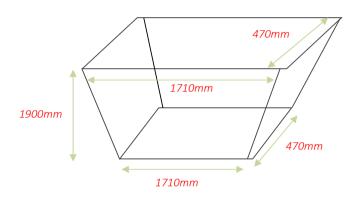
APPENDIX 5 - Soil Percolation Test Results

SOIL PERCOLATION TEST

Sheet 1 of 2

Date of Test: 26/02/2021

POSITION: SA01 TEST 1 Weather:


Overcast, rain

Engineer:

B Massey

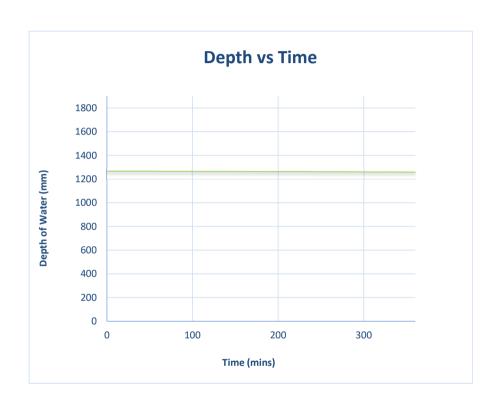
Checked: R Wyatt

<u>Trial Pit Measurements</u>

Pit Depth (mm):	1900
Pit Details:	Open with no stone filling
Groundwater Level:	NGW

Test Data

Time Elapsed (mins)	Depth to Water Level (m)
0	634
1	634
2	634
3	634
4	634
5	634
10	634
15	634
20	634
25	634
30	634
40	634
50	634
60	635
83	635
107	636
120	636
184	637
225	638
275	639
312	640
360	641


HMP HOLLOWAY GRO-20291 WATERMAN I&E

SOIL PERCOLATION TEST

Sheet 2 of 2

SA01 TEST 1

Volume of Pit (m ³)	1.52703
Void Ratio of Infill	1
<i>Volume of Infill (m³)</i>	N/A
Volume of Water in Pit (m ³)	1.0174842

Compliancy Check:

Water Level at 75% effective depth (mm)	949.5
Water Level at 25% effective depth (mm)	316.5

Test not BRE 365 compliant with BRE 365 - insufficient time to drain past 25% effective depth

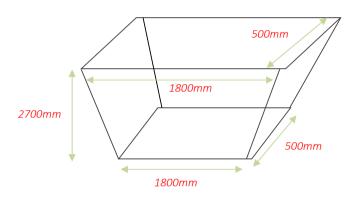
Soil Infiltration Rate Calculation

Water Level 1	1266
Water Level 2	1259
Time to Drain from Level 1 to Level 2 (mins)	360
Volume of water discharged (m ³)	0.0056259
Discharge Area (m²)	6.3082
Soil Infiltration Rate (m/min)	2.4773E-06
Soil Infiltration Rate (m/sec)	4.13E-08

SOIL PERCOLATION TEST

Sheet 1 of 2

Date of Test: 26/02/2021 SA02A
TEST 1


Weather:

Overcast, rain

Engineer: Checked: B Massey

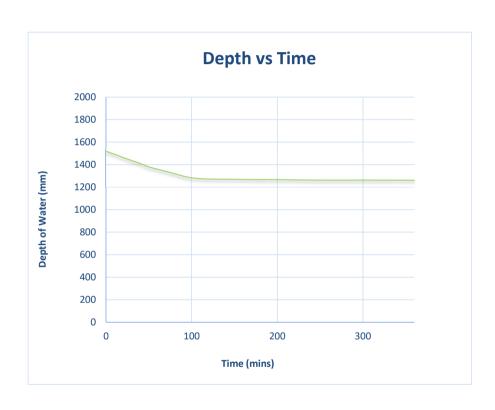
R Wyatt

<u>Trial Pit Measurements</u>

Pit Depth (mm):	2700
Pit Details:	Open with no stone filling
Groundwater Level:	NGW

Test Data

Time Elapsed (mins)	Depth to Water Level (m)
0	1183
1	1184
2	1185
3	1188
4	1193
5	1195
10	1207
15	1222
23	1245
35	1276
51	1321
74	1367
103	1420
146	1430
195	1433
242	1437
300	1437
360	1438


HMP HOLLOWAY GRO-20291 WATERMAN I&E

SOIL PERCOLATION TEST

Sheet 2 of 2

SAO2A TEST 1

Volume of Pit (m ³)	2.43
Void Ratio of Infill	1
<i>Volume of Infill (m³)</i>	N/A
Volume of Water in Pit (m ³)	1.3653

Compliancy Check:

Water Level at 75% effective depth (mm)	1137.75
Water Level at 25% effective depth (mm)	379.25

Test not BRE 365 compliant with BRE 365 - insufficient time to drain past 25% effective depth

Soil Infiltration Rate Calculation

Water Level 2 1 Time to Drain from Level 1 to Level 2 (mins) Volume of water discharged (m³) 0.2 Discharge Area (m²) 7.2		
Water Level 2 1 Time to Drain from Level 1 to Level 2 (mins) Volume of water discharged (m³) 0.2	il Infiltration Rate (m/min) 8.74	428E-05
Water Level 2 1 Time to Drain from Level 1 to Level 2 (mins) Volume of water discharged (m³) 0.2		
Water Level 2 Time to Drain from Level 1 to Level 2 (mins)	scharge Area (m²)	7.2917
Water Level 2 Time to Drain from Level 1 to Level 2 (mins)	lume of water discharged (m °)	0.2295
Water Level 2		
	ne to Drain from Level 1 to Level 2 (mins)	360
water Level 1	ater Level 2	1262
Water Level 1	ater Level 1	1517

APPENDIX 6 - Interim Ground Gas Results

PERMANENT GROUND GAS MONITORING FORM

SITE NAME:	HMP HOLLOWAY	ENGINEER:	Joshua Turton
CLIENT:	WATERMAN I & E	DATE:	24/02/2021
JOB NO:	GRO-20291		

Pressure Trend:	Falling	Weather:		Overcast		Equipi	ment:	GFM 436
Ambient:	O ₂ (%v/v)	CH ₄ (%v/v)	CO ₂ (%v/v)	LEL	H ₂ S (ppm)	CO (ppm)		
Start	20.7	0.0	0.0	0.0	0.0	0.0		
Finish	20.7	0.0	0.0	0.0	0.0	0.0		

BH Ref.	Gas Flow	Rate (I/hr)	Borehole Pressure	N	Methane (%v/	v)	Carbon Dio	xide (%v/v)	Oxyger	า (%v/v)	Hydrogen Su	lphide (ppm)	Carbon Mor	oxide (ppm)	Q _{hg} CO ₂	Q _{hg} CH ₄	Atmos Press	PID (ppm)	Sheen (Y/N)	Depth to Water
	Peak	Steady	(mb)	Peak	Steady	LEL	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(l/hr)	(l/hr)	(mb)	(PP)	(1714)	(m bgl)
BH01E(S)	0.0	0.0	0.00	0.0	0.0	0.0	0.7	0.8	16.3	15.9	0.0	0.0	0.0	0.0	0.0007	0.0000	1017	0.3	N	NGW
BH01E(D)	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.0	19.8	20.0	0.0	0.0	0.0	0.0	0.0001	0.0000	1017	1.8	N	16.50
BH02(S)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	11.9	11.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1015	0.3	N	NGW
BH02(D)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.8	20.8	0.0	0.0	0.0	0.0	0.0000	0.0000	1016	0.0	N	8.53
BH04	0.0	0.0	0.00	0.0	0.0	0.0	0.2	0.0	17.9	20.3	25.0	0.0	47.0	10.0	0.0002	0.0000	1017	0.6	N	13.60
BH05	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.0	18.1	20.5	0.0	0.0	10.0	0.0	0.0003	0.0000	1017	1.1	N	12.56
BH06	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.7	20.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1017	0.1	N	0.75
BH08	0.0	0.0	0.00	0.0	0.0	0.0	4.6	0.8	4.2	16.3	0.0	0.0	0.0	0.0	0.0046	0.0000	1017	0.3	N	NGW
BH09	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.0	20.4	20.6	0.0	0.0	0.0	0.0	0.0001	0.0000	1018	0.2	N	16.08
BH10	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.2	20.2	0.0	0.0	0.0	0.0	0.0000	0.0000	1018	0.3	N	24.11
BH12	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.7	20.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1017	0.0	N	7.79
BH14	0.0	0.0	0.00	0.0	0.0	0.0	4.6	0.8	4.2	16.3	0.0	0.0	0.0	0.0	0.0046	0.0000	1017	0.4	N	19.04
BH16	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.0	20.4	20.6	0.0	0.0	0.0	0.0	0.0001	0.0000	1018	0.0	N	18.01
BH18	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.2	20.2	0.0	0.0	0.0	0.0	0.0000	0.0000	1018	0.0	N	0.80
BH19	0.0	0.0	0.00	0.0	0.0	0.0	0.5	0.3	19.8	20.2	0.0	0.0	0.0	0.0	0.0005	0.0000	1017	1.1	N	1.29
BH21	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	19.3	20.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1017	0.1	Ν	24.42
WS01	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1017	0.1	N	0.94
WS02	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.0	20.1	20.7	0.0	0.0	0.0	0.0	0.0001	0.0000	1017	1.4	N	1.01
WS05	0.0	0.0	0.00	0.0	0.0	0.0	0.5	0.3	19.8	20.2	0.0	0.0	0.0	0.0	0.0005	0.0000	1017	0.0	N	NGW
WS07	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	19.3	20.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1017	0.0	N	2.87
WS08	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	19.3	20.7	0.0	0.0	0.0	0.0	0.0000	0.0000	1017	0.1	N	2.08
WS10	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1017	0.1	N	0.83
WS11	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1017	0.0	N	1.12
WS12	0.0	0.0	0.00	0.0	0.0	0.0	0.1	0.0	20.1	20.7	0.0	0.0	0.0	0.0	0.0001	0.0000	1017	0.3	N	1.10

Notes:

PERMANENT GROUND GAS MONITORING FORM

SITE NAME:	HMP HOLLOWAY	ENGINEER:	Joshua Turton
CLIENT:	WATERMAN I & E	DATE:	12/03/2021
JOB NO:	GRO-20291		

Pressure Trend:	Steady	Weather:		Overcast		Equip	ment:	GFM 436
							-	
Ambient:	o ₂ (%v/v)	CH ₄ (%v/v)	co ₂ (%v/v)	LEL	H ₂ S (ppm)	CO (ppm)		
Start	20.2							
Finish	20.2							

BH Ref.	Gas Flow	Rate (I/hr)	Borehole Pressure	N	Methane (%v/	v)	Carbon Dio	oxide (%v/v)	Oxyger	ı (%v/v)	Hydrogen Su	lphide (ppm)	Carbon Mon	oxide (ppm)	Q _{hg} CO ₂	Q _{hg} CH ₄	Atmos Press	PID (ppm)	Sheen (Y/N)	Depth to Water
	Peak	Steady	(mb)	Peak	Steady	LEL	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(l/hr)	(l/hr)	(mb)	(ppiii)		(m bgl)
BH01E(S)	0.0	0.0	0.00	0.0	0.0	0.0	0.4	0.5	18.6	18.7	0.0	0.0	0.0	0.0	0.0004	0.0000	1004	0.0	N	NGW
BH01E(D)	0.0	0.0	0.00	0.0	0.0	0.0	0.9	0.1	16.4	19.8	0.0	0.0	0.0	0.0	0.0009	0.0000	1004	1.2	N	11.59
BH02(S)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	8.0	8.6	0.0	0.0	0.0	0.0	0.0000	0.0000	1004	0.0	N	NGW
BH02(D)	0.0	0.0	0.00	0.0	0.0	0.0	0.4	0.0	10.5	19.6	0.0	0.0	0.0	0.0	0.0004	0.0000	1004	0.0	N	8.34
BH04	0.0	0.0	0.00	0.0	0.0	0.0	0.7	0.3	12.3	17.4	0.0	0.0	0.0	0.0	0.0007	0.0000	1004	0.1	N	14.72
BH05	0.0	0.0	0.00	0.0	0.0	0.0	0.6	0.0	15.9	19.8	0.0	0.0	0.0	0.0	0.0006	0.0000	1002	0.4	N	10.03
BH06	0.0	0.0	0.00	0.0	0.0	0.0	0.5	0.0	20.1	20.3	0.0	0.0	0.0	0.0	0.0005	0.0000	1002	0.0	N	2.21
BH08	0.0	0.0	0.00	0.0	0.0	0.0	2.1	0.2	13.6	19.5	0.0	0.0	0.0	0.0	0.0021	0.0000	1004	0.1	N	NGW
BH09	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.1	19.4	20.0	0.0	0.0	0.0	0.0	0.0003	0.0000	1004	0.0	N	16.00
BH10	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.2	20.2	0.0	0.0	0.0	0.0	0.0000	0.0000	1004	0.1	N	11.90
BH12	0.0	0.0	0.00	0.0	0.0	0.0	0.5	0.0	20.1	20.3	0.0	0.0	0.0	0.0	0.0005	0.0000	1002	0.0	N	6.21
BH14	0.0	0.0	0.00	0.0	0.0	0.0	2.1	0.2	13.6	19.5	0.0	0.0	0.0	0.0	0.0021	0.0000	1004	0.2	N	16.80
BH16	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.1	19.4	20.0	0.0	0.0	0.0	0.0	0.0003	0.0000	1004	0.0	N	15.36
BH18	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.2	20.2	0.0	0.0	0.0	0.0	0.0000	0.0000	1004	0.0	N	0.75
BH19	0.0	0.0	0.00	0.0	0.0	0.0	2.7	0.4	14.9	19.6	0.0	0.0	0.0	0.0	0.0027	0.0000	1002	0.5	N	5.00
BH21	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.0	18.4	19.9	0.0	0.0	0.0	0.0	0.0003	0.0000	1004	0.0	N	20.31
WS01	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1004	0.0	N	2.50
WS02	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.1	20.1	0.0	0.0	0.0	0.0	0.0000	0.0000	1002	0.6	N	1.84
WS05	0.0	0.0	0.00	0.0	0.0	0.0	2.7	0.4	14.9	19.6	0.0	0.0	0.0	0.0	0.0027	0.0000	1002	0.0	N	NGW
WS07	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.0	18.4	19.9	0.0	0.0	0.0	0.0	0.0003	0.0000	1004	0.0	N	4.00
WS08	0.0	0.0	0.00	0.0	0.0	0.0	0.3	0.0	18.4	19.9	0.0	0.0	0.0	0.0	0.0003	0.0000	1004	0.0	N	NGW
WS10	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1004	0.0	N	NGW
WS11	0.0	0.0	0.00	0.0	0.0	0.0	1.0	0.0	15.0	20.7	0.0	0.0	0.0	0.0	0.0010	0.0000	1004	0.0	N	3.84
WS12	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	20.1	20.1	0.0	0.0	0.0	0.0	0.0000	0.0000	1002	0.1	N	3.73

Notes:

APPENDIX 7 - Limitations

Limitations

This contract was completed by Groundtech Consulting on the basis of a defined programme and scope of works and terms and conditions agreed with the client. This report was compiled with due skill and care, taking into consideration the project brief provided, project objectives, agreed scope of works, prevailing site conditions and budget allocation.

Other than that defined in the paragraph above, Groundtech Consulting provides no other accountability or warranty whether express or implied, is made in relation to the services. Unless otherwise agreed this report has been prepared exclusively for the use and reliance of the client in accordance with generally accepted industry practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon, or transferred to, by any other party without the written agreement of a Director of Groundtech Consulting. A third party who relies on this report, does so at their own and sole risk and no liability to such parties is provided by Groundtech Consulting.

It is the understanding of Groundtech Consulting that this report is to be used for the intended purpose as set out in the introduction. The purpose was instrumental in determining the scope and level of the services provided. Should the purpose of the report or the proposed end use of the site change, this report will no longer be directly applicable, and its validity readdressed. No reliance upon the report in the revised situation should be assumed by the client without the permission of Groundtech Consulting.

The report was written in 2021, later changes in legislation, statutory requirements and industry best practices have not been considered and this should be allowed for. Ground conditions can also change and should be investigated if there is any significant delay in acting on the findings of this report. The period of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions in this report should not be relied upon in the future without the written confirmation from Groundtech Consulting that it is safe to do so.

The observations and conclusions outlined in this report are based exclusively on the services that were provided as set out in the agreement between the client and Groundtech Consulting.

Groundtech Consulting are not liable for the existence of any condition, the discovery of which would require additional investigation outside the agreed scope of works or core competency. The services provided are based upon Groundtech Consulting observations of existing physical conditions at the site gained from site reconnaissance together with interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The findings and recommendations contained in this report are based in part upon information provided by third parties, and Groundtech Consulting assume the information to be correct.

No responsibility can be accepted for errors for third party information presented in this report. Groundtech Consulting were not authorised to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the services. Groundtech Consulting are not liable for any inaccurate information, misrepresentation of data or conclusions, which may inform the scope of investigation undertaken by Groundtech Consulting and forms the contract with the client.

Where field investigations have been carried out these have been restricted to a level of detail required to achieve the stated objectives of the work. Ground conditions can also be variable due to its heterogeneous properties and as investigation exploratory locations only allow examination of the ground at discrete locations. The potential exists for ground conditions to be encountered which are different to those considered in this report, particularly between exploratory holes. The extent of the limited area depends on the soil and groundwater conditions, together with other constraints such as the position of any existing structures and underground utilities. Geo-Environmental testing was carried out for a limited number of parameters [as stipulated in the contract] based on an understanding of the available operational and historical information, and it should not be inferred that other chemical species are not present.

The groundwater conditions entered on the exploratory hole records are those observed at the time of investigation. The groundwater level often has not had time to reach equilibrium and a monitoring period is required. Furthermore, groundwater levels are subject to seasonal variation or changes in local drainage conditions and higher groundwater levels may occur at other times of the year than were recorded during this investigation.

Any site drawings provided in this report are not meant to be an accurate base plan, but are preliminary and used to present the general relative locations of features on, and surrounding, the site.

Appendix C Laboratory Analysis Results

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,

WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-52361

Project / Site name:Holloway PrisonSamples received on:20/01/2021

Your job number: WIE16172 Samples instructed on/ 22/01/2021

Analysis started on:

Analysis completed by: 29/01/2021

Report Issue Number: 1 **Report issued on:** 29/01/2021

Samples Analysed: 6 soil samples

107798

Dewrardio

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1744476	1744477	1744478	1744479	1744480
Sample Reference				BH06	BH07	BH07	BH10	BH20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.50	1.00	0.50
Date Sampled				19/01/2021	20/01/2021	20/01/2021	20/01/2021	21/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	15	23	13	13
Total mass of sample received	kg	0.001	NONE	1.5	1.5	1.5	1.5	1.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	_	Not-detected	Not-detected
ADESCOS III SOII		-		Not detected	Not detected		Not detected	Not detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	9.4	8.1	10.4	8.0
Organic Matter	%	0.1	MCERTS	3.2	0.2	0.1	2.2	2.9
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.9	< 0.1	< 0.1	1.3	1.7
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	19	13	14	15
Barium (aqua regia extractable)	mg/kg	1	MCERTS	110	99	31	120	140
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.69	1	1.5	1	0.82
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	7.1	1.4	1.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.7	< 0.2	< 0.2	< 0.2	0.9
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	43	18	57	28	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	38	26	38	56	79
Lead (aqua regia extractable)	mg/kg	1	MCERTS	93	53	17	100	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	< 0.3	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	1.5	0.51	1.1	0.95
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	11	47	18	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	38	35	95	54	48
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	290	23	94	100	160
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				1744476	1744477	1744478	1744479	1744480
Sample Reference				BH06	BH07	BH07	BH10	BH20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.50	1.00	0.50
Date Sampled				19/01/2021	20/01/2021	20/01/2021	20/01/2021	21/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons				3				-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	17
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	27
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	27

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1744481
Sample Reference				BH20
Sample Number				None Supplied
Depth (m)		1.50		
Date Sampled				21/01/2021
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	12
Total mass of sample received	kg	0.001	NONE	1.2

Asbestos in Soil	Type	N/A	ISO 17025	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.5
Organic Matter	%	0.1	MCERTS	1.3
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.8

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19
Barium (aqua regia extractable)	mg/kg	1	MCERTS	120
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.96
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	50
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.2
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	53
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	150

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0

Lab Sample Number				1744481
Sample Reference				BH20
Sample Number				None Supplied
Depth (m)				1.50
Date Sampled				21/01/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Petroleum Hydrocarbons				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1744476	BH06	None Supplied	0.5	Brown loam and clay with gravel and vegetation.
1744477	BH07	None Supplied	1	Non Soil**
1744478	BH07	None Supplied	1.5	Brown clay and sand.
1744479	BH10	None Supplied	1	Brown clay and sand with gravel.
1744480	BH20	None Supplied	0.5	Brown clay and sand with gravel.
1744481	BH20	None Supplied	1.5	Brown clay and sand with gravel.

^{**}Non MCERTS Matrix

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Metals in soil by ICP-OES Determination of metals in soil by aqua-regia digestion In		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
		In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	stos identification in soil Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.		A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Hexavalent chromium in soil Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		In-house method	L080-PL	w	MCERTS	
Moisture Content Moisture content, determined gravimetrically. (30 oC)		In house method.	L019-UK/PL	W	NONE	
rganic matter (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		In house method.	L009-PL	D	MCERTS	
pH in soil (automated)	in soil (automated) Determination of pH in soil by addition of water followed by automated electrometric measurement.		L099-PL	D	MCERTS	
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.		In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total organic carbon (Automated) in soil	tal organic carbon (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		L009-PL	D	MCERTS	
3TEX and MTBE in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS.		In-house method based on USEPA8260	L073B-PL	W	MCERTS	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS	
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE	
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE	

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-52363

Project / Site name:Holloway PrisonSamples received on:20/01/2021

Your job number: WIE16172 Samples instructed on/ 22/01/2021

Analysis started on:

Your order number: 107798 Analysis completed by: 29/01/2021

Report Issue Number: 1 **Report issued on:** 29/01/2021

Samples Analysed: 10:1 WAC sample

Durradio

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Limits Sampling Date 19/01/2021 Sample ID BH06 Inert Waste Landfill HZARDOUS waste in non-hazardous Landfill Solid Waste Analysis TOC (%)** 1.8 3% 5% 1.8 3% 5% 1.8 5000 3.9 5 % 5 % 1.8 5 %	Waste Acceptance Criteria Analytical Report No:	itcourto	21-5236	3					
Location Holloway Prison Landfill Waste Acceptance									
Location Holloway Prison Landfill Waste Acceptance Landfill Parker Landfill Parker Landfill Parker Landfill Parker Landfill Pa						Cliont	WATERMAN		
Lab Reference (Sample Number) 1744497 1744498						Client:	WAIERMAN		
Lab Reference (Sample Number) 1744497 1744498	Location		Holloway Pr	rison		1			
Sampling Date 19/01/2021 BH06 Inert Waste (Landfill Park Company of the C	Lab Beforence (Sample Number)					Landfill Waste Acceptance Cr			
The component The componen	Lab Reference (Sample Number)								
Depth (m) Dept	· -			1					
Depth (m) Dept	Sample ID		BH06			Inert Waste		Hazardous	
Solid Waste Analysis	Depth (m)	0.50				Landfill	waste in non- hazardous	Waste Landfill	
STEX (pptgs) **	Solid Waste Analysis								
STEX (µg/kg) ** < 10 6000	` '					3%	5%	6%	
Sum of PCBs (mg/kg) ** < 0.0007 1								10%	
Mineral Oil (mg/kg)									
Total PAH (WAC-17) (mg/kg) 3.18									
## Company of the Com									
Cache Cach									
Compage Comp	pH (units)**	7.4					>6		
BS EN 12457 - 2 preparation utilising end over end leaching procedure) mg/l mg/kg mg/k	Acid Neutralisation Capacity (mol / kg)	2.4					To be evaluated	To be evaluated	
mg/kg	Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test	
Sarium *		mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/k			
Barium *	Arsenic *	0.0042			0.0352	0.5	2	25	
Cadmium * < 0.0001								300	
Chromium * 0.0017 0.015 0.5 10	Cadmium *					0.04	1	5	
Mercury *	Chromium *	0.0017				0.5	10	70	
Mercury *	Copper *	0.011			0.093	2	50	100	
Nickel * 0.0045 0.038 0.4 10					< 0.0050	0.01	0.2	2	
Dead Dead	Molybdenum *	< 0.0004			< 0.0040	0.5	10	30	
Antimony *	Vickel *	0.0045			0.038	0.4	10	40	
Selenium *	.ead *	0.0042			0.036	0.5	10	50	
Cinc	Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Chloride * 2.0 16 800 15000 Fluoride 0.40 3.4 10 150 Sulphate * 3.8 32 1000 20000 Fluoride 540 4000 60000 Fluoride 64 540 4000 60000 Fluoride 750 80.3 500 800 Comparison Fluoride 80.3 500 800 Comparison Fluor	Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Suphate	Zinc *	0.012			0.097	4	50	200	
Sulphate *	Chloride *	2.0			16	800	15000	25000	
FIDS* 64 540 4000 60000	Fluoride	0.40			3.4	10	150	500	
Pehenol Index (Monohydric Phenols) *	Sulphate *	3.8			32	1000	20000	50000	
9.55 80.3 500 800 Leach Test Information						4000		100000	
Leach Test Information	Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
Sitone Content (%) < 0.1 Sample Mass (kg) 1.5 Story Matter (%) 81	DOC	9.55			80.3	500	800	1000	
Sitone Content (%) < 0.1 Sample Mass (kg) 1.5 Sory Matter (%) 81									
Gample Mass (kg) 1.5 Dry Matter (%) 81	each Test Information								
Ory Matter (%) 81	Stone Content (%)	< 0.1							
	Sample Mass (kg)	1.5							
Aoisture (%) 19		81							
		19							
Results are expressed on a dry weight basis, after correction for moisture content where applicable. *= UKAS accredited (liquid eluate analy	Results are expressed on a dry weight basis, after correction for me	sture content who	e annlicable			*= IIKAS accredit	L ed (liquid eluato and	lysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-52363 Project / Site name: Holloway Prison

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1744497	BH06	None Supplied	0.5	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 21-52363 Project / Site name: Holloway Prison

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
5 EN 12457-2 (10:1) Leachate Prep 10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.		In-house method based on BSEN12457-2.	L043-PL	W	NONE
of acid or alkali followed by electronic probe.		In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	neral Oil (Soil) C10 - C40 Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.		L076-PL	D	NONE
Moisture Content Moisture content, determined gravimetrically. (30 oC)		In house method.	L019-UK/PL	w	NONE
		In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
B's By GC-MS in soil Determination of PCB by extraction with acetone and hexane followed by GC-MS.		In-house method based on USEPA 8082	L027-PL	D	MCERTS
H at 20oC in soil Determination of pH in soil by addition of water followed by electrometric measurement.		In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.		L019-UK/PL	D	NONE
tal organic carbon (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	EX in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS.		L073B-PL	W	MCERTS
Total BTEX in soil (Poland) Determination of BTEX in soil by headspace GC-MS.		In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	als in leachate by ICP-OES Determination of metals in leachate by acidification followed by ICP-OES.		L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Analytical Report Number: 21-52363 Project / Site name: Holloway Prison

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-52855

Project / Site name: Holloway Samples received on: 25/01/2021

Your job number: WIE16172 Samples instructed on/ 25/01/2021

Analysis started on:

Your order number: 107836 Analysis completed by: 01/02/2021

01/02/2021 **Report Issue Number:** Report issued on:

Samples Analysed: 3 soil samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting

> leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	1747151 BH18 None Supplied 1.50 22/01/2021 None Supplied < 0.1 16 1.7 Not-detected 8.7 0.6 0.0032 0.3
None Supplied None Supplied None Supplied	None Supplied 1.50 22/01/2021 None Supplied
Depth (m)	1.50 22/01/2021 None Supplied < 0.1 16 1.7 Not-detected 8.7 0.6 0.0032
Date Sampled	22/01/2021 None Supplied < 0.1 16 1.7 Not-detected 8.7 0.6 0.0032
None Supplied None Supplied None Supplied None Supplied	 < 0.1 16 1.7 Not-detected 8.7 0.6 0.0032
Analytical Parameter (Soil Analysis)	< 0.1 16 1.7 Not-detected 8.7 0.6 0.0032
Stone Content % 0.1 NONE < 0.1 < 0.1	16 1.7 Not-detected 8.7 0.6 0.0032
Stone Content % 0.1 NONE < 0.1 < 0.1	16 1.7 Not-detected 8.7 0.6 0.0032
Moisture Content % 0.01 NONE 19 18	16 1.7 Not-detected 8.7 0.6 0.0032
Total mass of sample received kg 0.001 NONE 1.5 1.7	1.7 Not-detected 8.7 0.6 0.0032
Asbestos in Soil Type N/A ISO 17025 - Not-detected General Inorganics pH - Automated pH Units N/A MCERTS - 8.7 Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	8.7 0.6 0.0032
General Inorganics pH - Automated pH Units N/A MCERTS - 8.7 Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	8.7 0.6 0.0032
General Inorganics pH - Automated pH Units N/A MCERTS - 8.7 Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	8.7 0.6 0.0032
pH - Automated pH Units N/A MCERTS - 8.7 Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	0.6 0.0032
pH - Automated pH Units N/A MCERTS - 8.7 Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	0.6 0.0032
Organic Matter % 0.1 MCERTS - 0.5 Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	0.6 0.0032
Fraction Organic Carbon (FOC) N/A 0.001 MCERTS - 0.003 Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	0.0032
Total Organic Carbon (TOC) % 0.1 MCERTS - 0.3 Speciated PAHs Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	1
Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	
Naphthalene mg/kg 0.05 MCERTS 0.91 < 0.05	
Traphatache	
Arenanhthylene mg/kg 0.05 MCFRTS > 0.05	< 0.05
mediaphanyiene	< 0.05
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05	< 0.05
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05	< 0.05
Phenanthrene mg/kg 0.05 MCERTS 0.32 < 0.05	< 0.05
Anthracene	< 0.05
Fluoranthene mg/kg 0.05 MCERTS 0.66 < 0.05	< 0.05
Pyrene mg/kg 0.05 MCERTS 0.57 < 0.05	< 0.05
Benzo(a)anthracene mg/kg 0.05 MCERTS 0.42 < 0.05	< 0.05
Chrysene mg/kg 0.05 MCERTS 0.34 < 0.05	< 0.05
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.42 < 0.05	< 0.05
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.25 < 0.05	< 0.05
Benzo(a)pyrene mg/kg 0.05 MCERTS 0.32 < 0.05	< 0.05
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05	< 0.05
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05	< 0.05
Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 < 0.05	< 0.05
Coronene mg/kg 0.05 NONE < 0.05 < 0.05	< 0.05
Total PAH	
Total WAC-17 PAHs mg/kg 0.85 NONE 4.21 < 0.85	< 0.85
Heavy Metals / Metalloids	
Arsenic (aqua regia extractable) mg/kg 1 MCERTS - 11	8.6
Barium (aqua regia extractable) mg/kg 1 MCERTS - 100	1500
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS - 1.3	1
Boron (water soluble) mg/kg 0.2 MCERTS - 3	1.8
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS - < 0.2	< 0.2
Chromium (hexavalent) mg/kg 4 MCERTS - < 4.0	< 4.0
Chromium (III)	26
Chromium (aqua regia extractable) mg/kg 1 MCERTS - 49	26
Copper (aqua regia extractable) mg/kg 1 MCERTS - 36	15
Lead (aqua regia extractable) mg/kg 1 MCERTS - 33	16
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS - < 0.3	< 0.3
Molybdenum (aqua regia extractable) mg/kg 0.25 MCERTS - 0.96	0.51
Nickel (aqua regia extractable) mg/kg 1 MCERTS - 47	24
Selenium (aqua regia extractable) mg/kg 1 MCERTS - < 1.0	< 1.0
Vanadium (aqua regia extractable) mg/kg 1 MCERTS - 93	55
Zinc (aqua regia extractable) mg/kg 1 MCERTS - 93	39

Monoaromatics & Oxygenates

BH06 None Supplied 0.50 19/01/2021 None Supplied	BH18 None Supplied 0.50 22/01/2021 None Supplied	BH18 None Supplied 1.50 22/01/2021 None Supplied
0.50 19/01/2021	0.50 22/01/2021	1.50 22/01/2021
19/01/2021	22/01/2021	22/01/2021
None Supplied	None Supplied	None Supplied
-	< 1.0	< 1.0
-	< 1.0	< 1.0
-	< 1.0	< 1.0
-	< 1.0	< 1.0
-	< 1.0	< 1.0
-	< 1.0	< 1.0
	- - -	- < 1.0 - < 1.0 - < 1.0 - < 1.0

mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
mg/kg	1	MCERTS	-	< 1.0	< 1.0
mg/kg	2	MCERTS	-	< 2.0	< 2.0
mg/kg	8	MCERTS	-	< 8.0	< 8.0
mg/kg	8	MCERTS	-	< 8.0	< 8.0
mg/kg	8.4	NONE	-	< 8.4	< 8.4
mg/kg	10	MCERTS	-	< 10	< 10
mg/kg	10	NONE	-	< 10	< 10
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.001 mg/kg 0.001 mg/kg 1.001 mg/kg 1 mg/kg 2 mg/kg 8 mg/kg 8 mg/kg 8.4 mg/kg 10	mg/kg 0.001 MCERTS mg/kg 0.001 MCERTS mg/kg 1 MCERTS mg/kg 2 MCERTS mg/kg 8 MCERTS mg/kg 8 MCERTS mg/kg 8.4 NONE mg/kg 10 MCERTS	mg/kg 0.001 MCERTS - mg/kg 0.001 MCERTS - mg/kg 1 MCERTS - mg/kg 2 MCERTS - mg/kg 8 MCERTS - mg/kg 8 MCERTS - mg/kg 8 MCERTS - mg/kg 8 MCERTS - mg/kg 8 MCERTS - mg/kg 8 MCERTS - mg/kg 10 MCERTS -	mg/kg 0.001 MCERTS - < 0.001

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-	< 10	< 10

VOCs

Chloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane		1	MCERTS	< 1.0	< 1.0	< 1.0
Trichloromethane		1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane		1	MCERTS	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene		1	MCERTS	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene		1	NONE	< 1.0	< 1.0	< 1.0
Benzene		1	MCERTS	< 1.0	< 1.0	< 1.0
Tetrachloromethane		1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane		1	MCERTS	< 1.0	< 1.0	< 1.0
Trichloroethene		1	MCERTS	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0

Lab Sample Number				1747149	1747150	1747151
Sample Reference	BH06	BH18	BH18			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	0.50	1.50			
Date Sampled	19/01/2021	22/01/2021	22/01/2021			
Time Taken				None Supplied	None Supplied	None Supplied
Time raken		_		тчопе заррпеа	тионе заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Styrene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0
o-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene		0.2	MCERTS	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3

Lab Sample Number				1747149	1747150	1747151
Sample Reference	BH06	BH18	BH18			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	0.50	1.50			
Date Sampled	19/01/2021	22/01/2021	22/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
		E				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Naphthalene	mg/kg	0.05	MCERTS	0.91	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	0.32	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	0.66	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.25	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.32	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-52855 Project / Site name: Holloway

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1747149	BH06	None Supplied	0.5	Brown loam and clay with gravel and vegetation.
1747150	BH18	None Supplied	0.5	Brown clay and sand.
1747151	BH18	None Supplied	1.5	Brown sandy clay with gravel.

Analytical Report Number : 21-52855 Project / Site name: Holloway

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Analytical Report Number : 21-52855 Project / Site name: Holloway

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-52856

Project / Site name: Holloway Samples received on: 25/01/2021

Your job number: WIE16172 Samples instructed on/ 25/01/2021

Analysis started on:

Your order number: 107840 Analysis completed by: 01/02/2021

Report Issue Number: 1 Report issued on: 01/02/2021

Samples Analysed: 2 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Environmental Science

Analytical Report Number: 21-52856 Project / Site name: Holloway Your Order No: 107840

Lab Sample Number				1747152	1747153
Sample Reference				BH08	BH17
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	1.00
Date Sampled				25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied
		Ę			traine a copp
		nit o	Accreditation Status		
Analytical Parameter	Units	of d	reditat Status		
(Soil Analysis)	ផ	eter	tati		
		Limit of detection	9		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	24
Total mass of sample received	kg	0.001	NONE	2	1.7
1000 1100 D. D. D. D. D. D. D. D. D. D. D. D. D.			1	_	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
	•				
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	8.7	9
Organic Matter	%	0.1	MCERTS	0.2	1.2
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0012	0.0071
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.7
_					
Speciated PAHs	•	2.05	· · · · · · · · · · · · · · · · · · ·		
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS MCERTS	-	< 0.05
Fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	< 0.05 < 0.05
Pyrene Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05
Coronene	mg/kg	0.05	NONE	-	< 0.05
			-		
Total PAH					
Total WAC-17 PAHs	mg/kg	0.85	NONE	-	< 0.85
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	10
Barium (aqua regia extractable)	mg/kg	1	MCERTS	26	53
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1.1
Boron (water soluble)	mg/kg mg/kg	0.2	MCERTS MCERTS	0.7	2.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	4	MCERTS	< 0.2	< 0.2
,	mg/kg	1	NONE	< 4.0 45	< 4.0 44
Chromium (III) Chromium (aqua regia extractable)	mg/kg	1	MCERTS	45	44
Copper (aqua regia extractable)	mg/kg	1	MCERTS	32	23
Lead (aqua regia extractable)	mg/kg	1	MCERTS	17	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.51	0.63
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	44	37
Coloria de Coloria de	ma#:-		MCEDIC		

Monoaromatics & Oxygenates

Zinc (aqua regia extractable)

Selenium (aqua regia extractable)

Vanadium (aqua regia extractable)

mg/kg mg/kg

mg/kg

mg/kg

1

1

MCERTS

MCERTS

MCERTS

77

80

< 1.0

75

78

Analytical Report Number: 21-52856 Project / Site name: Holloway Your Order No: 107840

Lab Sample Number				1747152	1747153
Sample Reference				BH08	BH17
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	1.00
Date Sampled				25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	5.1	3.7
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	13	51
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	85	100
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	24	60
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	110	160

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10

VOCs

μg/kg	1	ISO 17025	-	< 1.0
μg/kg	1	NONE	-	< 1.0
μg/kg	1	ISO 17025	-	< 1.0
μg/kg	1	NONE	-	< 1.0
μg/kg	1	NONE	-	< 1.0
μg/kg	1	NONE	ı	< 1.0
μg/kg	1	ISO 17025	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	NONE	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
μg/kg	1	MCERTS	-	< 1.0
	ру/ку ру/ку	µg/kg 1 µg/kg µg/kg 1 µg/kg	µg/kg	µg/kg

Analytical Report Number: 21-52856 Project / Site name: Holloway Your Order No: 107840

Lab Sample Number				1747152	1747153
Sample Reference		BH08	BH17		
Sample Number		None Supplied	None Supplied		
Depth (m)				0.50	1.00
Date Sampled				25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	i	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0
Toluene	μg/kg	1	MCERTS	ī	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	ī	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	ī	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	i	< 1.0
Tetrachloroethene	μg/kg	1	NONE	i	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	i	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	i	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	i	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	i	< 1.0
Styrene	μg/kg	1	MCERTS	i	< 1.0
Tribromomethane	μg/kg	1	NONE	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3

Analytical Report Number: 21-52856 Project / Site name: Holloway Your Order No: 107840

Lab Sample Number				1747152	1747153
Sample Reference	BH08	BH17			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	1.00			
Date Sampled		25/01/2021	25/01/2021		
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-52856 Project / Site name: Holloway

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1747152	BH08	None Supplied	0.5	Brown clay and sand with gravel.
1747153	BH17	None Supplied	1	Brown sandy clay with gravel and vegetation.

Analytical Report Number : 21-52856 Project / Site name: Holloway

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS	
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE	

Analytical Report Number : 21-52856 Project / Site name: Holloway

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

27/01/2021

Analytical Report Number: 21-53798

Project / Site name: Holloway Prison Samples received on: 26/01/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

Analysis completed by: 03/02/2021

Report Issue Number: 1 **Report issued on:** 03/02/2021

Samples Analysed: 7 soil samples

107879

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 107879

Depth (m)									
Sample Number Dopth (m) Suppled None Supple	1752235	1752234			1752231				Lab Sample Number
Depth (n) Date Sampled	TP09								· ·
Date Sampled	None Supplied								-
None Supplied None Supplie	1.00								
Scient Analysis Scient Ana	25/01/2021								
Sune Content	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	1			Time Taken
Abbestore Content						Accreditation Status	imit of detection	Units	-
Total mass of sample received	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	NONE	0.1	%	Stone Content
Asbestos in Soil Screen / Identification Name Type N/A ISO 17025 -	18	19	8.8	22	20				Moisture Content
Asbestos (an Soil S	1.2	2.0	2.0	2.0	2.0	NONE	0.001	kg	Total mass of sample received
Asbestos (an Soil S									
Asheestos Quantification (Stage 2)	Chrysotile	-	Amosite	-	-				Asbestos in Soil Screen / Identification Name
Rebestos Quantification Total % 0.001 ISO 17025 0.004	Detected	-		-	Not-detected				
PH - Automated	0.001	-		-	-				
PH - Automated	0.001	-	0.004	-	-	ISO 17025	0.001	%	Asbestos Quantification Total
PH - Automated									Conoral Inorganics
Organic Matter % 0.1 MCERTS 1.4 0.5 1.4 1.1 Total Organic Carbon (TOC) % 0.1 MCERTS 0.8 0.3 0.8 0.6 Speciated PAHS Naphthelene mg/kg 0.05 MCERTS < 0.05	7.0	0.0	10.7	0.0	70	MCERTS	N/A	nH I Inite	
Total Organic Carbon (TOC)	7.9	8							
Speciated PAHs	1.3	8							
Naphthalene	1.3	0.0	0.8	0.3	0.6				Total Organic Carbon (TOC)
Acenaphthylene mg/kg 0.05 MCERTS 0.05 - 0.31 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05									Speciated PAHs
Acenaphthene mg/kg 0.05 MCERTS < 0.05 - 3.3 0.96 Fluorene mg/kg 0.05 MCERTS < 0.05 - 3.3 0.94 Fluorene mg/kg 0.05 MCERTS < 0.05 - 1.5 5 Anthracene mg/kg 0.05 MCERTS < 0.05 - 1.5 5 Anthracene mg/kg 0.05 MCERTS < 0.05 - 4.7 1.4 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 4.7 1.4 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 24 10 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 21 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 21 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 21 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 21 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 2.1 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 2.1 9.1 Fluoranthene mg/kg 0.05 MCERTS < 0.05 -	< 0.05	< 0.05	< 0.05	-	< 0.05	MCERTS	0.05	mg/kg	
Accenaphthene mg/kg 0.05 MCERTS < 0.05 - 3.3 0.96 Fluorene mg/kg 0.05 MCERTS < 0.05	0.2	8		-		MCERTS	0.05	mg/kg	·
Phenanthrene	2.9			-		MCERTS	0.05	mg/kg	• •
Anthracene mg/kg 0.05 MCERTS < 0.05 - 4.7 1.4 Fluoranthene mg/kg 0.05 MCERTS < 0.05 - 24 10 Pyrene mg/kg 0.05 MCERTS < 0.05 - 24 10 Pyrene mg/kg 0.05 MCERTS < 0.05 - 21 9.1 Henzo(a)anthracene mg/kg 0.05 MCERTS < 0.05 - 11 4.6 Henzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 - 11 4.6 Henzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 - 7.8 3.5 Henzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 - 9.7 4.1 Henzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 - 9.7 4.1 Henzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 - 4.3 2.3 Henzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 - 8.9 4 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 - 3.9 1.7 Henzo(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Henzo(gh)perylene mg/kg 0.05 MCERTS < 0.80 - 123 50.2 Total PAH Speciated Total EPA-16 PAHS mg/kg 1 MCERTS 13 16 10 17 Henzo(mayar egia extractable) mg/kg 1 MCERTS 1.3 1.3 0.67 1.2 Henzo(mayar egia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2 Henzo(mayar egia extractable) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Henzo(mayar egia extractable) mg/kg 0.2 MCERTS 0.6 0.2 0.2 0.2 0.2 Henzo(mayar egia extractable) mg/kg 1 MCERTS 2.3 1.3 0.67 1.2 Henzo(mayar egia extractable) mg/kg 1 MCERTS 2.5 2.5 2.6 3.0 Henzo(mayar egia extractable) mg/kg 1	4.1	0.84	3.3	-	< 0.05	MCERTS	0.05	mg/kg	·
Fluoranthene	29	5	15	-	< 0.05	MCERTS	0.05	mg/kg	Phenanthrene
Pyrene	7.9	1.4	4.7	-	< 0.05	MCERTS	0.05	mg/kg	Anthracene
Benzo(a)anthracene	44	10	24	-	< 0.05	MCERTS	0.05	mg/kg	Fluoranthene
Chrysene	31	9.1	21	-	< 0.05	MCERTS	0.05	mg/kg	Pyrene
Benzo(b)fluoranthene	19	4.6	11	-	< 0.05	MCERTS	0.05	mg/kg	Benzo(a)anthracene
Benzo(k)fluoranthene	13			-	< 0.05				Chrysene
Benzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 - 8.9 4 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 - 3.9 1.7 Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43 Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 - 4.8 2.2 Coronene mg/kg 0.05 NONE < 0.05 - < 0.05 < 0.05 Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 - 123 50.2 Heavy Metals / Metalloids McERTS Macerts M	18			-					
Indenot(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 - 3.9 1.7	7.1			-					
Diberz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 - 0.87 0.43	14								` '''
Benzo(ghi)perylene	7.5								
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 - 123 50.2	1.8			-					<u> </u>
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 - 123 50.2 Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 13 16 10 17 Barium (aqua regia extractable) mg/kg 1 MCERTS 150 190 77 130 Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.6 < 0.2	9	8		-					15 // /
Material Parisman	< 0.05	< 0.05	< 0.05	-	< 0.05	HONE	0.05	mg/kg	Coronene
Heavy Metals / Metalloids Marsenic (aqua regia extractable) mg/kg 1 MCERTS 13 16 10 17									Total PAH
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 13 16 10 17 Barium (aqua regia extractable) mg/kg 1 MCERTS 150 190 77 130 Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.6 < 0.2	210	50.2	123	-	< 0.80	MCERTS	0.8	mg/kg	Speciated Total EPA-16 PAHs
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 13 16 10 17 Barium (aqua regia extractable) mg/kg 1 MCERTS 150 190 77 130 Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.6 < 0.2									
Barium (aqua regia extractable) mg/kg 1 MCERTS 150 190 77 130 Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.6 < 0.2 < 0.2 < 0.2 < 0.2 Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 Chromium (III) mg/kg 1 NONE 61 50 31 45 Chromium (aqua regia extractable) mg/kg 1 MCERTS 61 50 32 45 Copper (aqua regia extractable) mg/kg 1 MCERTS 22 25 26 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28			•						
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 2.3 1.3 0.67 1.2	17								· · · · · · · · · · · · · · · · · · ·
Boron (water soluble) mg/kg 0.2 MCERTS 1.3 4.0 0.7 1.1	120								,
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS 0.6 < 0.2 < 0.2 < 0.2 Chromium (hexavalent) mg/kg 4 MCERTS < 4.0	1.3								
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 Chromium (III) mg/kg 1 NONE 61 50 31 45 Chromium (aqua regia extractable) mg/kg 1 MCERTS 61 50 32 45 Copper (aqua regia extractable) mg/kg 1 MCERTS 22 25 26 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28	1.9								
Chromium (III) mg/kg 1 NONE 61 50 31 45 Chromium (aqua regia extractable) mg/kg 1 MCERTS 61 50 32 45 Copper (aqua regia extractable) mg/kg 1 MCERTS 22 25 26 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28	< 0.2 < 4.0								, , , ,
Chromium (aqua regia extractable) mg/kg 1 MCERTS 61 50 32 45 Copper (aqua regia extractable) mg/kg 1 MCERTS 22 25 26 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28	< 4.0 34								
Copper (aqua regia extractable) mg/kg 1 MCERTS 22 25 26 30 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28	35								` '
Lead (aqua regia extractable) mg/kg 1 MCERTS 20 15 30 28	62								, , , , ,
(170	8							, ,
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3	0.8					MCERTS	0.3	mg/kg	
Molybdenum (aqua regia extractable) mg/kg 0.25 MCERTS 2.2 0.91 1.1 1.0	1.4								, , , , ,
Nickel (aqua regia extractable) mg/kg 1 MCERTS 30 41 22 40	27								, , , , , , , , , , , , , , , , , , , ,
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0	< 1.0								
Vanadium (aqua regia extractable) mg/kg 1 MCERTS 74 85 60 75	70					MCERTS	1		
Zinc (aqua regia extractable) mg/kg 1 MCERTS 56 71 88 84	140					MCERTS	1	mg/kg	, , , , , ,

Your Order No: 107879

Lab Sample Number				1752231	1752232	1752233	1752234	1752235
Sample Reference				BH04	BH04	BH02	BH02	TP09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	0.50	1.70	1.00
Date Sampled				25/01/2021	25/01/2021	25/01/2021	25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Lir						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	redi Stat					
(Soil Analysis)	Ŗ	etec	us					
		tio	9					
	<u> </u>	_						
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
(,				- 1.0	- 1.0	- 1.0	- 1.0	- 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC0 - EC0 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	20	10	4.9
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	2	MCERTS	4.2	4.4	310	83	35
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	13	8.4	500	91	52
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	27	8.7	270	76	59
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	9,4	< 8.4	130	63	22
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	44	22	1100	260	150
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	54	22	1200	320	170
,								
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	3.5	4.8	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	110	48	14
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	280	100	110
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	180	110	100
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	11	15	36
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	570	260	220
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	580	270	260
` ′			_					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0		-	-	< 1.0
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
	µg/kg							. 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane			MCERTS	< 1.0 < 1.0	-	-	-	< 1.0
	μg/kg	1 1 1	MCERTS MCERTS					
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg μg/kg	1 1 1	MCERTS MCERTS MCERTS MCERTS	< 1.0 < 1.0	-	-	-	< 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane	µg/kg µg/kg µg/kg µg/kg	1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 1.0 < 1.0 < 1.0		- - -	- - -	< 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg μg/kg μg/kg μg/kg	1 1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 1.0 < 1.0 < 1.0 < 1.0	- - -	- - -	- - -	< 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MONE	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	- - - -			< 1.0 < 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,1-Dichloropropene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	- - - -			< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,1-Dichloropropene Trans-1,2-dichloroethene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS MCERTS	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		- - - - -	- - - - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,1-Dichloropropene Trans-1,2-dichloroethene Benzene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE MCERTS	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			- - - - - - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0

Your Order No: 107879

Lab Sample Number				1752231	1752232	1752233	1752234	1752235
Sample Reference				BH04	BH04	BH02	BH02	TP09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	0.50	1.70	1.00
Date Sampled				25/01/2021	25/01/2021	25/01/2021	25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ε.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	< 1.0	-	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	-	=	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	ı	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	ı	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	ı	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3

Your Order No: 107879

Lab Sample Number				1752231	1752232	1752233	1752234	1752235
Sample Reference				BH04	BH04	BH02	BH02	TP09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	0.50	1.70	1.00
Date Sampled				25/01/2021	25/01/2021	25/01/2021	25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tancon		Ε.		чоне заррнеа	чоне заррнеа	чоне заррнеа	топе заррнеа	топе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	ı	1	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	ı	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	0.2
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	2.9
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-	1.5
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	4.1
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	29
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	7.9
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	-	-	0.7
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	44
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	31
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	19
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	13
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	18
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	7.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	14
	·	0.05	MCERTS	< 0.05	_	_	_	7.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.03	PICERTS	< 0.05	-	-	-	7.5
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	-	-	1.8

U/S = Unsuitable Sample I/S = Insufficient Sample

Your Order No: 107879

Lab Sample Number				1752236	1752237
Sample Reference				TP05	TP02
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	0.50			
Date Sampled	25/01/2021	25/01/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	5.1
Total mass of sample received	kg	0.001	NONE	1.2	1.2

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	Amosite	-
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	10	10.4
Organic Matter	%	0.1	MCERTS	0.4	0.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.5

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-
Coronene	mg/kg	0.05	NONE	-	-

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	1
-----------------------------	-------	-----	--------	---	---	---

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	11
Barium (aqua regia extractable)	mg/kg	1	MCERTS	61	220
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.82	0.54
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.9
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	32	36
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	36
Copper (aqua regia extractable)	mg/kg	1	MCERTS	49	280
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.6
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.2	4.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	38	37
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	53	34
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	430

Your Order No: 107879

,2-Dichloroethane

1,1-Dichloropropene

Tetrachloromethane

1,2-Dichloropropane

Trichloroethene

Benzene

Trans-1,2-dichloroethene

Lab Sample Number				1752236	1752237
Sample Reference				TP05	TP02
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.50
Date Sampled				25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied
		Ē			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Monoaromatics & Oxygenates					-
•	μg/kg	1	MCERTS	- 10	. 1 O
Benzene Faliana	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene		1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
0-xylene MTRF (Methyl Tertiany Butyl Ether)	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	pg/kg	-	HIGERIA	< 1.0	< 1.0
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	12	49
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	24	160
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	59	240
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	31	69
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	96	450
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	130	520
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10
VOCs Chloromethane	μg/kg	1	ISO 17025		
Chloroethane	μg/kg	1	NONE	-	-
Bromomethane	μg/kg	1	ISO 17025		-
Vinyl Chloride	μg/kg	1	NONE	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-
,	μg/kg	1	ISO 17025		
1,1,2-Trichloro 1,2,2-Trifluoroethane		1	MCERTS	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-
1,1-Dichloroethane	μg/kg	1		-	-
2,2-Dichloropropane	μg/kg		MCERTS	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-

μg/kg μg/kg

μg/kg

μg/kg

μg/kg μg/kg

μg/kg

1

1

1

MCERTS

MCERTS

NONE

MCERTS

MCERTS

MCERTS

MCERTS

Your Order No: 107879

Lab Sample Number				1752236	1752237
Sample Reference				TP05	TP02
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.50
Date Sampled	25/01/2021	25/01/2021			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Dibromomethane	μg/kg	1	MCERTS	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-
Toluene	μg/kg	1	MCERTS	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-
Styrene	μg/kg	1	MCERTS	-	-
Tribromomethane	μg/kg	1	NONE	-	-
o-Xylene	μg/kg	1	MCERTS	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-

SVOCs

Aniline	mg/kg	0.1	NONE	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-

Your Order No: 107879

Lab Sample Number				1752236	1752237
Sample Reference				TP05	TP02
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.50
Date Sampled				25/01/2021	25/01/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	i	-
Chrysene	mg/kg	0.05	MCERTS	i	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	i	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	ī	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	ī	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	ì	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1752233	BH02	0.50	186	Sheeting/Board Debris	Amosite	0.004	0.004
1752235	TP09	1.00	145	Loose Fibres	Chrysotile	0.001	0.001
1752236	TP05	0.50	140	Loose Fibres	Amosite	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1752231	BH04	None Supplied	0.5	Brown clay and sand with gravel and brick.
1752232	BH04	None Supplied	1	Brown clay.
1752233	BH02	None Supplied	0.5	Brown clay and sand with gravel and vegetation.
1752234	BH02	None Supplied	1.7	Brown clay and loam with vegetation.
1752235	TP09	None Supplied	1	Brown clay and loam with gravel.
1752236	TP05	None Supplied	0.5	Brown clay and sand.
1752237	TP02	None Supplied	0.5	Brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Analytical Report Number : 21-53798 Project / Site name: Holloway Prison

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP09	None Supplied	S	1752235	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP09	None Supplied	S	1752235	b	TPHCWG (Soil)	L088/76-PL	b
TP09	None Supplied	S	1752235	b	Volatile organic compounds in soil	L073B-PL	b

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-53804

Project / Site name: Holloway Prison Samples received on: 26/01/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

27/01/2021

Your order number: 107879

Analysis completed by: 03/02/2021

Report Issue Number: 1

Report issued on:

03/02/2021

Samples Analysed: 2 10:1 WAC samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-53804				
				61		
				Client:	WATERMAN	
Location		Holloway Priso	on			
Lab Reference (Sample Number)		1752270 / 17522	Landfill	Waste Acceptanc	e Criteria	
		1752270 / 17522	/1		Limits Stable Non-	
Sampling Date Sample ID		25/01/2021 BH04			reactive	
Depth (m)		0.50	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						
OC (%)**	0.9			3%	5%	6%
oss on Ignition (%) **	2.6					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
fineral Oil (mg/kg)	< 10			500		
otal PAH (WAC-17) (mg/kg)	0.96			100		
H (units)**	7.7				>6	
cid Neutralisation Capacity (mol / kg)	4.4				To be evaluated	To be evaluated
luate Analysis	10:1		10:1	Limit valu	es for compliance le	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
orocedure)	mg/l		mg/kg			
Arsenic *	0.0167		0.125	0.5	2	25
Barium *	0.0264		0.199	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0006		0.0043	0.5	10	70
Copper *	0.013		0.10	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
10lybdenum *	0.0092		0.0690	0.5	10	30
lickel *	0.0027		0.021	0.4	10	40
ead *	0.0014		0.011	0.5	10	50
antimony *	< 0.0017		< 0.017	0.06	0.7	5
Gelenium *	< 0.0040		< 0.040	0.1	0.5	7
inc *	0.0051		0.038	4	50	200
Chloride *	1.3		10	800	15000	25000
luoride	1.6		12	10	150	500
Sulphate *	1400		10000	1000	20000	50000
TDS*	710		5400	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
OOC	1.96		14.7	500	800	1000
each Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	2.0					
Ory Matter (%)	80					
Noisture (%)	20					
	noisture content wher			1	ted (liquid eluate an	l

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	Results	21-	53804				
					Client:	WATERMAN	
Location		Hollow	ay Prison				
Lab Reference (Sample Number)		1752272	/ 1752273		Landfill	Waste Acceptano Limits	ce Criteria
Sampling Date		25/0	1/2021			Stable Non-	
Sample ID		В	H02		To sub Misses	reactive	
Depth (m)		C	.50	_	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.9				3%	5%	6%
Loss on Ignition (%) **	2.1						10%
BTEX (μg/kg) **	< 10			+	6000		
Sum of PCBs (mg/kg) **	< 0.007			+	1		
Mineral Oil (mg/kg)	780			1	500	-	
Total PAH (WAC-17) (mg/kg)	119			1	100		
pH (units)**	11.4					>6	
Acid Neutralisation Capacity (mol / kg)	160					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance le	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using bs EN	1 12457-2 at L/S 10	ri/kg (ilig/kg)
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0371			0.330	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0007			0.0063	0.5	10	70
Copper *	0.0076			0.068	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0045			0.040	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0023			0.021	4	50	200
Chloride *	13			120	800	15000	25000
Fluoride	< 0.050			< 0.50	10	150	500
Sulphate *	40			360	1000	20000	50000
TDS*	180			1600	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	9.50			84.4	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1		1				
Sample Mass (kg)	2.0			1			
Dry Matter (%)	91			+			
Moisture (%)	8.8						
· ·							
				1			
Results are expressed on a dry weight basis, after correction for m	nisture content wh	ere annlicable			*= UKAS accredi	red (liquid eluate an	alveis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

b Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1752270	BH04	None Supplied	0.5	Brown clay and sand with gravel and brick.
1752272	BH02	None Supplied	0.5	Brown clay and loam with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	nalytical Method Reference Method number Wet / Analys					
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE			
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe. In-house method based on Guidance an Samplin and Testing of Wastes to Meet Landfill Waste Acceptance"		L046-PL	w	NONE			
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS			
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE			
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE			
Speciated WAC-17 PAHs in soil	WAC-17 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. In-house method based on USEPA 8270. MCERTS accredited except Coronene.		L064-PL	D	NONE			
PCB's By GC-MS in soil	C-MS in soil Determination of PCB by extraction with acetone and hexane followed by GC-MS. In-house method based on USEPA 8082		L027-PL	D	MCERTS			
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS			
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE			
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS			
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS			
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS			
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil"	L039-PL	W	ISO 17025			
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025			
Fluoride 10:1 WAC	oride 10:1 WAC Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode. Streng Determination of		L033B-PL	W	ISO 17025			
Sulphate 10:1 WAC	10:1 WAC Determination of sulphate in leachate by ICP-OES In-house method based on MEWAM 1986 Methods for the Determination of Metals in the control of the Determination of Metals in the control of the Determination of Metals in the Control of the Determination of Metals in the Control of the Determination of Metals in the Control of		L039-PL	W	ISO 17025			
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025			

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-54270

Project / Site name: Holloway Prison Samples received on: 21/01/2021

Your job number: WIE16172 Samples instructed on/ 01/02/2021

Analysis started on:

107903 Your order number: Analysis completed by: 05/02/2021

Report Issue Number: Report issued on: 05/02/2021

Samples Analysed: 1 soil sample

Signed: A. Cherwinsku

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-54270 Project / Site name: Holloway Prison Your Order No: 107903

Lab Sample Number		1755102		
Sample Reference	BH15			
Sample Number	None Supplied			
Depth (m)	0.50			
Date Sampled	28/01/2021			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	12
Total mass of sample received	kg	0.001	NONE	1.2

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2
Organic Matter	%	0.1	MCERTS	2.9
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.017
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	86
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.82
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (III)	mg/kg	1	NONE	28
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	47
Lead (aqua regia extractable)	mg/kg	1	MCERTS	160
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.5
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0

Analytical Report Number: 21-54270 Project / Site name: Holloway Prison Your Order No: 107903

Lab Sample Number	1755102			
Sample Reference				BH15
Sample Number				None Supplied
Depth (m)				0.50
Date Sampled	28/01/2021			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Petroleum Hydrocarbons	-			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	18
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	25
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	25

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	b Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1	1755102	BH15	None Supplied	0.5	Brown loam and clay with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status		
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.					
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248		A001-PL	D	ISO 17025		
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS		
Hexavalent chromium in soil	t chromium in soil Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS		
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS		
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE		
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS		
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS		
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE		
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS		
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS		
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE		
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS		
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE		
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE		

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-54273

Project / Site name: Holloway Prison Samples received on: 28/01/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

29/01/2021

Your order number: 107903

Analysis completed by: 08/02/2021

Report Issue Number: 1

Report issued on:

08/02/2021

Samples Analysed: 18 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 107903

Lab Sample Number				1755104	1755105	1755106	1755107	1755108
Sample Reference				TP04	TP04	TP01	SA01	SA02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	2.50	0.50	1.00	0.50
Date Sampled				26/01/2021	26/01/2021	26/01/2021	26/01/2021	26/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	15	8.6	10	8.9
Total mass of sample received	kg	0.001	NONE	0.9	0.7	0.7	0.5	0.7
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	i	-	-	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.0	8.3	10.6	8.0	9.1
Organic Matter	%	0.1	MCERTS	0.5	0.2	< 0.1	< 0.1	2.3
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0027	0.001	< 0.0010	< 0.0010	0.014
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	0.1	< 0.1	< 0.1	1.4
Speciated PAHs	mg/kg	0.05	MCERTS	< 0.05	_	. 0.05	_	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	_	< 0.05 < 0.05	-	-
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	_	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05		< 0.05	-	
Phenanthrene	mg/kg	0.05	MCERTS	0.49	_	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	0.49	_	< 0.05	_	_
Fluoranthene	mg/kg	0.05	MCERTS	1.4	_	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	1.6	_	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	_	< 0.05	_	-
Chrysene	mg/kg	0.05	MCERTS	0.95	_	< 0.05	_	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.3	-	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.48	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.2	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.6	-	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.69	-	< 0.05	-	-
Coronene	mg/kg	0.05	NONE	< 0.05	-	< 0.05	-	-
Total PAH	-				-			
Total WAC-17 PAHs	mg/kg	0.85	NONE	10.1	_	< 0.85	_	
IOGH WAC I/ IAHS	5, 5			10.1		< 0.0J	_	

Lab Sample Number		1755104	1755105	1755106	1755107	1755108				
Sample Reference				TP04	TP04	TP01	SA01	SA02		
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.60	2.50	0.50	1.00	0.50		
Date Sampled				26/01/2021	26/01/2021	26/01/2021	26/01/2021	26/01/2021		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Time ruxen		-	I	топе заррнеа	тионе Заррнеа	топе заррпеа	None Supplied	None Supplied		
		Limit of detection	Accreditation Status							
Analytical Parameter	ç	9,	Sta							
(Soil Analysis)	Units	dete	tus							
		cti	ion							
		on .								
Heavy Metals / Metalloids			T							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	20	29	16	12		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	110	28	36	24	130		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.91	1.3	0.74	1.2	0.68		
Boron (water soluble)	mg/kg	0.2	MCERTS	3.2	1.8	0.6	0.5	0.4		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		
Chromium (III)	mg/kg	1	NONE	30	48	30	41	19		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30	48	30	41	19		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	28	31	18	35	45		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	100	18	15	16	130		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	0.8		
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.3	0.57	1.4	0.54	1.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	51	30	45	19		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	58	91	71	82	40		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	78	87	100	80	190		
Monoaromatics & Oxygenates										
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Petroleum Hydrocarbons										
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	9.2	< 2.0	< 2.0	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	29	< 8.0	< 8.0	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	52	< 8.0	< 8.0	< 8.0	< 8.0		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	90	< 10	< 10	< 10	< 10		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	90	< 10	< 10	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	7.1		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	16	< 10	< 10	< 10	31		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	41	< 10	< 10	< 10	64		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	57	< 10	< 10	< 10	100		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	57	< 10	< 10	< 10	100		

		1755104	1755105	1755106				
Lab Sample Number	•						1755107	1755108
Sample Reference				TP04	TP04	TP01	SA01	SA02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	2.50	0.50	1.00	0.50
Date Sampled				26/01/2021	26/01/2021	26/01/2021	26/01/2021	26/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs	-		-		-		-	-
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	_	_	-	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	_	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	_	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	_	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	_	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	_	-	_	_
Trichloromethane	μg/kg	1	MCERTS	< 1.0	_	_	_	_
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	_		_	_
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	-	_	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	_		_	_
Benzene	μg/kg	1	MCERTS	< 1.0	_		_	_
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	_	_	_	_
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	_	_	_	_
Trichloroethene	μg/kg	1	MCERTS	< 1.0	_	_	_	_
Dibromomethane	μg/kg	1	MCERTS	< 1.0	_	_	_	_
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	_		_	_
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	_	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	_	_	_	_
Toluene	μg/kg	1	MCERTS	< 1.0	_	_	_	_
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	_	_	_	_
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	_	_	_	_
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	_	_	_	_
Tetrachloroethene	µg/kg	1	NONE	< 1.0				-
1.2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	_	-		_
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	_			
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_		_	_
Ethylbenzene	μg/kg	1	MCERTS	< 1.0		-		-
	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	-		
Styrene Tribromomethane	μg/kg	1	NONE	< 1.0	-	-	-	-
o-Xylene	μg/kg μg/kg	1	MCERTS	< 1.0		-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0		-		-
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0		-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	_	-	-	-
• • •	μg/kg	1	MCERTS					
2-Chlorotoluene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
4-Chlorotoluene	µg/kg µg/kg	1	ISO 17025	< 1.0				
1,3,5-Trimethylbenzene		1	MCERTS	< 1.0	-	-	-	-
tert-Butylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
sec-Butylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,3-Dichlorobenzene	μg/kg			< 1.0	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-

Your Order No: 107903

Lab Sample Number		•		1755104	1755105	1755106	1755107	1755108
Sample Reference				TP04	TP04	TP01	SA01	SA02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.60	2.50	0.50	1.00	0.50			
Date Sampled	26/01/2021	26/01/2021	26/01/2021	26/01/2021	26/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Accreditation Status Units Units								
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-

SVOC

SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	0.49	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	0.2	=	-	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	=	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	=	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	=	-	-	-

Your Order No: 107903

Lab Sample Number				1755104	1755105	1755106	1755107	1755108
Sample Reference				TP04	TP04	TP01	SA01	SA02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.60	2.50	0.50	1.00	0.50			
Date Sampled	26/01/2021	26/01/2021	26/01/2021	26/01/2021	26/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)								
Fluoranthene	mg/kg	0.05	MCERTS	1.4	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	1.6	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	0.95	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.3	-	1	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.48	-	-	-	-
Benzo(a)pyrene mg/kg 0.05 MCERTS				1.2	-	-	-	-
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS				0.6	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.69	-	-	-	=

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

				1755109	1755110	1755111	1755112	1755113
Sample Reference				TP06	TP10	SA03	TP08	TP08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.70	0.20	0.50	2.00
Date Sampled				26/01/2021	26/01/2021	27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	14	4.3	19	14
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.7	0.7	0.7
						,		
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	=	Crocidolite	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.015	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.015	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.4	0.0	8.9	8.2	7.0
рн - Automated Organic Matter	%	0.1	MCERTS	1.4	9.0 0.6	8.9	0.2	7.9 < 0.1
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0082	0.0032	0.012	0.0013	< 0.0010
Total Organic Carbon (TOC)	%	0.001	MCERTS	0.0082	0.0032	1.2	0.0013	< 0.1
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	=	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	_
Acanaphthana	ma/ka	0.05	_					-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
,	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	-	-	
Fluorene								-
Fluorene Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Fluorene Phenanthrene Anthracene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 0.59	-	-	
Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18	- - -	- - -	-
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6	- - -	- - -	- - - -
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4			
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5	- - - -	- - - -	
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2	- - - - -		
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2 3.9			
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2 3.9 2.0	- - - - - - - -	- - - - - - - -	
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2 3.9 2.0 3.8	- - - - - - - - -		
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2 3.9 2.0 3.8 2.5	- - - - - - - - - -	- - - - - - - - - -	
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.59 0.18 2.6 2.4 2.5 2.2 3.9 2.0 3.8 2.5 < 0.05	- - - - - - - - - - -	- - - - - - - - - - - -	
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05		- - - - - - - - - - - - - - - -	

Sample Reference	Lab Sample Number				1755109	1755110	1755111	1755112	1755113			
	•											
Depth (m) Dept												
	•											
None Supplied None Supplie												
Heavy Metals / Metalloids								, . , .				
	Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Mesenic (aquai regia extractable)		Units	imit of detection	Accreditation Status								
Berlum (equa regia extractable)	,								1			
Benyllium (aqua regia extractable)	,											
Bean (water soluble)	Barium (aqua regia extractable)				140	85	14	71	36			
Cadmissis (aqua regia extractable)	Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	0.82	0.15	1.1	1.3			
Chromium (hexavalent)	Boron (water soluble)	mg/kg	0.2		0.9	0.4	< 0.2	1	1.4			
Chromium (III)	Cadmium (aqua regia extractable)				< 0.2	< 0.2	0.9	< 0.2	< 0.2			
Chromium (aqua regia extractable)	Chromium (hexavalent)				< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			
Copper (aqua regia extractable)	Chromium (III)											
Lead (aqua regia extractable)	Chromium (aqua regia extractable)	mg/kg	1	MCERTS	44	34	6.2	40	50			
Mercury (aqua regia extractable)	Copper (aqua regia extractable)	mg/kg			37	41	18	26	25			
Monked M	Lead (aqua regia extractable)	mg/kg	1	MCERTS	130	150	20	54	16			
Mickel (aqua regia extractable)	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	< 0.3	< 0.3	< 0.3			
Miles	Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.7	1.3	0.7	0.6	0.58			
Variablum (aqua regia extractable)	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	41	30	6.7	37	45			
Monaromatics & Oxygenates Monaromatics & Oxygenates	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Monoaromatics & Oxygenates Monoaromatics & Oxygenates & Oxygenates Monoaromatics & Oxygenates & Oxygenates Monoaromatics & Oxygenates & Oxygena	Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	84	58	19	72	83			
Benzene	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	88	130	30	93	76			
Benzene												
Toluene	Monoaromatics & Oxygenates											
Ethylbenzene	Benzene				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
P & m-xylene	Toluene				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Paykg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
MCRTS Value Valu	p & m-xylene	μg/kg	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Petroleum Hydrocarbons TPH-CWG - Aliphatic >ECS - EC6	o-xylene				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
TPH-CWG - Aliphatic > EC5 - EC6 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 TPH-CWG - Aliphatic > EC6 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.00	MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
TPH-CWG - Aliphatic > EC5 - EC6 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 TPH-CWG - Aliphatic > EC6 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.00												
TPH-CWG - Aliphatic > EC6 - EC8				110555	1							
TPH-CWG - Aliphatic > ECB - EC10	<u> </u>											
TPH-CWG - Aliphatic >EC10 - EC12	•											
TPH-CWG - Aliphatic > EC12 - EC16	•											
TPH-CWG - Aliphatic >EC16 - EC21												
TPH-CWG - Aliphatic > EC21 - EC35	'											
TPH-CWG - Aliphatic > EC35 - EC44												
TPH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 79 < 10 TPH-CWG - Aliphatic (EC5 - EC44) mg/kg 10 NONE < 10	'											
TPH-CWG - Aliphatic (EC5 - EC44) mg/kg 0.001 MCERTS 0.001 0.001 MCERTS 0.001 0	TPH-CWG - Aliphatic > EC35 - EC44											
TPH-CWG - Aromatic >EC5 - EC7	, , ,											
TPH-CWG - Aromatic > EC7 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0	IPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NUNE	< 10	< 10	< 10	79	< 10			
TPH-CWG - Aromatic > EC7 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0			0.004	MCERTS	0.771		0	0.77				
TPH-CWG - Aromatic > EC8 - EC10 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001												
TPH-CWG - Aromatic > EC10 - EC12 mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
TPH-CWG - Aromatic >EC12 - EC16												
TPH-CWG - Aromatic > EC16 - EC21 mg/kg 10 MCERTS < 10 14 < 10 < 10 < 10 TPH-CWG - Aromatic > EC21 - EC35 mg/kg 10 MCERTS < 10	TPH-CWG - Aromatic >EC10 - EC12											
TPH-CWG - Aromatic > EC21 - EC35												
TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
TPH-CWG - Aromatic (EC5 - EC35)	TPH-CWG - Aromatic >EC21 - EC35											
, , , , , , , , , , , , , , , , , , , ,	TPH-CWG - Aromatic > EC35 - EC44											
TPH-CWG - Aromatic (EC5 - EC44) $\frac{\text{mg/kg}}{10}$ $\frac{10}{\text{NONE}}$ < 10 55 < 10 < 10 < 10	TPH-CWG - Aromatic (EC5 - EC35)											
	TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	55	< 10	< 10	< 10			

Lab Sample Number				1755109	1755110	1755111	1755112	1755113
Sample Reference				TP06	TP10	SA03	TP08	TP08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.70	0.20	0.50	2.00
Date Sampled				26/01/2021	26/01/2021	27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		듩	>					
And Bull Brown	_	Limit of detection	Accreditation Status					
Analytical Parameter (Soil Analysis)	Units	f de	edit					
(Soli Alialysis)	v	tec	atio					
		tion	š					
VOCs					8			
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	_
Chloroethane	μg/kg	1	NONE	-	-	-	_	_
Bromomethane	μg/kg	1	ISO 17025	_	_	_	_	_
Vinyl Chloride	μg/kg	1	NONE	_	_	_	_	_
Trichlorofluoromethane	μg/kg	1	NONE	_	_	_	_	_
1,1-Dichloroethene	μg/kg	1	NONE	_	_	_	_	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	_	_	_	_	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	_	_	_	_
Trichloromethane	μg/kg	1	MCERTS	-	_	_	_	_
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	_	_	_	_
1,2-Dichloroethane	μg/kg	1	MCERTS	_	_	_	_	_
1,1-Dichloropropene	μg/kg	1	MCERTS	-	_	_	_	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	_	_	_	_	_
Tetrachloromethane	μg/kg	1	MCERTS	-	_	_	_	_
1,2-Dichloropropane	μg/kg	1	MCERTS	-	_	_	_	_
Trichloroethene	μg/kg	1	MCERTS	-	_	_	_	_
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	_	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	_	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	_	-	-
Toluene	μg/kg	1	MCERTS	-	-	_	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	_	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	_	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	_	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1.2-Dibromoethane	μg/kg	1	ISO 17025	-	-	_	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	_	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	_	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	_	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	_	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	_	_	_	_	-
L								

Lab Sample Number				1755109	1755110	1755111	1755112	1755113
Sample Reference				TP06	TP10	SA03	TP08	TP08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50	0.70	0.20	0.50	2.00			
Date Sampled	26/01/2021	26/01/2021	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1.2.3-Trichlorobenzene	μg/kg	1	ISO 17025	_	_	_	_	_

SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	_	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	_	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	_	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	_	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	_	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	_	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	_	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	_	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	1	ı	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	1	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	1	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	1	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-		-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	-

Your Order No: 107903

Lab Sample Number				1755109	1755110	1755111	1755112	1755113
Sample Reference				TP06	TP10	SA03	TP08	TP08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50	0.70	0.20	0.50	2.00			
Date Sampled	26/01/2021	26/01/2021	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)								
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	1	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene mg/kg 0.05 MCERTS				-	-	-	-	-
ndeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS				-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number				1755114	1755115	1755116	1755117	1755118
Sample Reference				TP03	TP07	BH14	BH14	BH09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.00	3.00	0.50
Date Sampled				27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					·
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	16	8.1	14	10
Total mass of sample received	kg	0.001	NONE	0.7	0.7	1.2	0.7	1.1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.6	7.8	9.6	8.0	9.6
Organic Matter	%	0.1	MCERTS	1.1	0.6	< 0.1	0.1	0.6
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0064	0.0037	< 0.0010	< 0.0010	0.0032
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.6	0.4	< 0.1	< 0.1	0.3
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS		< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS		< 0.05	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS		< 0.05	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	_	< 0.05
Anthracene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	_	_	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	_	_	< 0.05
	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
CHI VACHE	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
•	9/109		MCERTS	-	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05						
Benzo(b)fluoranthene Benzo(k)fluoranthene		0.05	MCERTS	-	< 0.05	-	-	< 0.05
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg		MCERTS MCERTS	-	< 0.05 < 0.05	-	-	< 0.05 < 0.05
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05						
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg	0.05 0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS	-	< 0.05 < 0.05	-	-	< 0.05 < 0.05
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS	- - -	< 0.05 < 0.05 < 0.05			< 0.05 < 0.05 < 0.05

Lab Sample Number				1755114	1755115	1755116	1755117	1755118
Sample Reference				TP03	TP07	BH14	BH14	BH09
-				None Supplied				
Sample Number					None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.00	3.00	0.50
Date Sampled				27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Time Taken			1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	12	16	17	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	110	70	51	34	90
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.1	0.73	1.2	0.79
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.7	0.6	2.0	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	42	45	28	48	25
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	42	45	29	48	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	18	24	32	42
Lead (aqua regia extractable)	mg/kg	1	MCERTS	130	22	40	16	88
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	1.2	2.5	0.71	1.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	40	27	25	42	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	83	85	47	85	46
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	130	62	31	92	310
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
				11.0	11.0	11.0	11.0	11.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0	< 2.0 < 8.0
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0
'	mg/kg	8.4	NONE					
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	10	MCERTS	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	INDIAL	< 10	< 10	< 10	< 10	< 10
		0.004	MCERTS	0	0	0	0.77	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	14	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	31	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	45	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	45	< 10	< 10	< 10	< 10

				1	1			
Lab Sample Number				1755114	1755115	1755116	1755117	1755118
Sample Reference				TP03	TP07	BH14	BH14	BH09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.00	3.00	0.50
Date Sampled				27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		듥	>					
Analytical Parameter	_	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	f de	ם					
(Son Analysis)	v,	tect	s					
		io	5					
VOCs					8			
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	_	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	_	_	< 1.0
1.1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	_	_	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	_	< 1.0	-	_	< 1.0
Benzene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
Trichloroethene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
Dibromomethane	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	-	_	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	-	_	< 1.0
Toluene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	_	< 1.0	_	_	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	_	< 1.0	-	_	< 1.0
Tetrachloroethene	μg/kg	1	NONE	_	< 1.0	-	_	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	< 1.0	_	_	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	_	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	_	< 1.0	_	_	< 1.0
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	_	< 1.0
Tribromomethane	μg/kg	1	NONE	_	< 1.0	-	_	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	_	_	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	_	< 1.0	-	_	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	_	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	_	< 1.0	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	_	< 1.0	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS		< 1.0		-	< 1.0
1,3-Dichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025		< 1.0	-	-	< 1.0
h-130hi ohkiroineile	₽9/ N9		150 17025		< 1.0	•		< 1.0

Your Order No: 107903

Lab Sample Number				1755114	1755115	1755116	1755117	1755118
Sample Reference				TP03	TP07	BH14	BH14	BH09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50	1.00	1.00	3.00	0.50			
Date Sampled	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0

SVOCs

SVOCs								
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	=	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	=	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	=	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	=	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	=	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	=	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1	-	=	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	=	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	-	=	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	-	=	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	=	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	=	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	=	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3

Your Order No: 107903

Lab Sample Number				1755114	1755115	1755116	1755117	1755118
Sample Reference				TP03	TP07	BH14	BH14	BH09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.00	3.00	0.50
Date Sampled	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	ı	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1	< 0.05	i	1	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1	< 0.05	i	1	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	ı	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1755119	1755120	1755121
Sample Reference				BH21	BH21	BH21
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.00	4.00	5.00
Date Sampled				27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	17	18
Total mass of sample received	kg	0.001	NONE	0.7	0.7	0.7
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-
General Inorganics	Luus		MCEDIC			
pH - Automated	pH Units	N/A	MCERTS	8.0	7.9	-
Organic Matter	%	0.1	MCERTS	1.1	0.8	-
Fraction Organic Carbon (FOC)	N/A %	0.001	MCERTS MCERTS	0.0062	0.0045	-
Total Organic Carbon (TOC)	%0	0.1	MCERTS	0.6	0.5	-
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	0.9	-	-
Anthracene	mg/kg	0.05	MCERTS	0.26	-	-
Fluoranthene	mg/kg	0.05	MCERTS	1.3	-	-
Pyrene	mg/kg	0.05	MCERTS	1.1	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.74	-	-
Chrysene	mg/kg	0.05	MCERTS	0.56	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.62	-	-
		0.05	MCEDIC			

Coronene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

TOTAL PAH						
Total WAC-17 PAHs	mg/kg	0.85	NONE	7.25	-	-

0.05

0.05

0.05

0.05

0.05

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

NONE

0.43

0.69

0.28

< 0.05

0.38

< 0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Your Order No: 107903

Lab Sample Number				1755119	1755120	1755121
Sample Reference				BH21	BH21	BH21
Sample Number				None Supplied	None Supplied	None Supplied
•				1.00	4.00	5.00
Depth (m)						
Date Sampled				27/01/2021	27/01/2021	27/01/2021
Time Taken			1	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	13	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	24	25	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1.2	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	1.5	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-
Chromium (III)	mg/kg	1	NONE	47	45	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	47	45	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	38	36	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	17	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.52	0.51	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	45	45	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	84	79	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	87	82	-
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons	•	•	•			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10
(<u> </u>		1 20	1 20	1 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC10 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10
TITLEWO AROMALIC (LCJ - LCTT)	91.19			/ IO	< 10	< 10

Lab Sample Number				1755119	1755120	1755121
Sample Reference				BH21	BH21	BH21
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.00	4.00	5.00
Date Sampled				27/01/2021	27/01/2021	27/01/2021
Time Taken				None Supplied	None Supplied	None Supplied
Time raken				топе заррнеа	попс Заррпса	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
VOCs						
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	_	_
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	_	_
1.2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	_	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	_	_
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_	_
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	_	_
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	_	_
Styrene	μg/kg	1	MCERTS	< 1.0	_	-
Tribromomethane	μg/kg	1	NONE	< 1.0	_	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_	_
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-
	μg/kg	1	MCERTS		-	-
4-Chlorotoluene	μg/kg μg/kg	1	ISO 17025	< 1.0		
1,3,5-Trimethylbenzene			MCERTS	< 1.0	-	-
tert-Butylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-
1,2,4-Trimethylbenzene	μg/kg	1		< 1.0	-	-
sec-Butylbenzene 1,3-Dichlorobenzene	µg/kg µg/kg	1	MCERTS	< 1.0	-	-
			ISO 17025	< 1.0	-	-

Lab Sample Number		·		1755119	1755120	1755121
Sample Reference				BH21	BH21	BH21
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	1.00	4.00	5.00			
Date Sampled	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-

SVOCs						
Aniline	mg/kg	0.1	NONE	< 0.1	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	0.9	-	-
Anthracene	mg/kg	0.05	MCERTS	0.26	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-

Lab Sample Number		·		1755119	1755120	1755121
Sample Reference				BH21	BH21	BH21
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.00	4.00	5.00
Date Sampled	27/01/2021	27/01/2021	27/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Fluoranthene	mg/kg	0.05	MCERTS	1.3	-	-
Pyrene	mg/kg	0.05	MCERTS	1.1	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.74	-	-
Chrysene	mg/kg	0.05	MCERTS	0.56	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.62	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.43	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.69	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.28	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.38	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

	Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
ĺ	1755108	SA02	0.50	146	Bitumen Chrysotile		< 0.001	< 0.001
I	1755110	TP10	0.70	130	Loose Fibres	Crocidolite	0.015	0.015

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1755104	TP04	None Supplied	0.6	Brown clay and sand with gravel and brick.
1755105	TP04	None Supplied	2.5	Brown clay.
1755106	TP01	None Supplied	0.5	Light brown sand with gravel.
1755107	SA01	None Supplied	1	Light brown clay and sand with gravel.
1755108	SA02	None Supplied	0.5	Light brown sand with gravel and brick.
1755109	TP06	None Supplied	0.5	Light brown clay and sand with gravel and vegetation.
1755110	TP10	None Supplied	0.7	Light brown clay and sand with gravel.
1755111	SA03	None Supplied	0.2	Light brown gravel.**
1755112	TP08	None Supplied	0.5	Light brown clay and sand with gravel and vegetation.
1755113	TP08	None Supplied	2	Light brown clay and sand with gravel.
1755114	TP03	None Supplied	0.5	Light brown clay and sand with gravel.
1755115	TP07	None Supplied	1	Light brown clay and sand with gravel.
1755116	BH14	None Supplied	1	Light brown sand with gravel and brick.
1755117	BH14	None Supplied	3	Light brown clay and sand.
1755118	BH09	None Supplied	0.5	Light brown clay and sand with gravel.
1755119	BH21	None Supplied	1	Light brown clay.
1755120	BH21	None Supplied	4	Light brown clay.
1755121	BH21	None Supplied	5	Light brown clay.

^{**} Non MCERTS matrix

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
loisture Content Moisture content, determined gravimetrically. (30 oC)		In house method.	L019-UK/PL	W	NONE
Drganic matter (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		In house method.	L009-PL	D	MCERTS
peciated WAC-17 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.		L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil) Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.		In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts,

WD18 8YS t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-54275

Project / Site name: Holloway Prison Samples received on: 28/01/2021

Your job number: WIE16172 Samples instructed on/ 29/01/2021

Analysis started on:

Your order number: 107903 Analysis completed by: 05/02/2021

Report Issue Number: Report issued on: 05/02/2021

Samples Analysed: 1 10:1 WAC sample

Signed:

Claire Brown-Crociquia **Group Customer Services Manager** For & on behalf of i2 Analytical Ltd.

CROLOGINA)

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-	54275					
					Client:	WATERMAN		
Location		Hollow	ay Prison		l andeill	Waste Acceptance	- Cuitania	
Lab Reference (Sample Number)		1755235	/ 1755236		Landfill	Limits	e Criteria	
Sampling Date		27/0	1/2021			Stable Non-		
Sample ID			H09			reactive		
Depth (m)			.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.3				3%	5%	6%	
Loss on Ignition (%) **	2.3		1				10%	
BTEX (µg/kg) **	< 10		.		6000			
Sum of PCBs (mg/kg) **	< 0.007		-	1	1			
Mineral Oil (mg/kg)	58	 	1		500			
Total PAH (WAC-17) (mg/kg)	3.08	-	+		100			
pH (units)**	8.7		 			>6		
Acid Neutralisation Capacity (mol / kg)	27					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1		es for compliance le		
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0066			0.0587	0.5	2	25	
Barium *	0.0147			0.131	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0074			0.067	0.5	10	70	
Copper *	0.011			0.096	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0060			0.0536	0.5	10	30	
Nickel *	0.0025		1	0.022	0.4	10	40	
Lead *	0.0038		.	0.034	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.014			0.13	4	50	200	
Chloride *	4.5		 	40	800	15000	25000	
Fluoride	0.40		+	3.6 320	10	150	500	
Sulphate * TDS*	35 110	1	+	1000	1000 4000	20000 60000	50000 100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	6.20			55.4	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1		1					
Sample Mass (kg)	1.5							
Ory Matter (%)	90							
Moisture (%)	10							
			1					
			1		 	1		
		1	1	1	1	1		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as

amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1755235	BH09	None Supplied	0.5	Light brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Speciated WAC-17 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil Determination of PCB by extraction with acetone and hexane followed by GC-MS.		In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil Determination of pH in soil by addition of water followed by electrometric measurement.		In house method.	L005-PL	w	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.		L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.		In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

01/02/2021

Analytical Report Number: 21-54452

Project / Site name: Holloway Priston Samples received on: 01/02/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

Analysis completed by: 08/02/2021

Report Issue Number: 1 **Report issued on:** 08/02/2021

Samples Analysed: 3 soil samples

107935

Signed:

Rachel Bradley Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 107935

Lab Sample Number				1756516	1756517	1756518
Sample Reference				BH3	BH3	BH3
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	0.50	1.00	1.70			
Date Sampled	29/01/2021	29/01/2021	29/01/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	20	19
Total mass of sample received	kg	0.001	NONE	0.9	1.1	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-
General Inorganics						
oH - Automated	pH Units	N/A	MCERTS	8.9	-	7.8
Organic Matter	%	0.1	MCERTS	0.2	-	< 0.1
Fraction Organic Carbon (FOC)	N/A	0.001	MCEDTC	. 0.0010		. 0 0010

pH - Automated	pH Units	N/A	MCERTS	8.9	-	7.8
Organic Matter	%	0.1	MCERTS	0.2	1	< 0.1
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	< 0.0010	-	< 0.0010
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	-	< 0.1

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	-	17
Barium (aqua regia extractable)	mg/kg	1	MCERTS	56	-	26
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.84	-	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	2.2	ı	1.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0
Chromium (III)	mg/kg	1	NONE	31	-	40
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	-	40
Copper (aqua regia extractable)	mg/kg	1	MCERTS	27	-	34
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	-	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.81	-	0.68
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33	-	42
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	57	-	69
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	-	83

Your Order No: 107935

Lab Sample Number				1756516	1756517	1756518
Sample Reference				BH3	BH3	BH3
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.00	1.70
Date Sampled				29/01/2021	29/01/2021	29/01/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates						
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > EC5 - EC6 TPH-CWG - Aliphatic > EC6 - EC8 TPH-CWG - Aliphatic > EC8 - EC10 TPH-CWG - Aliphatic > EC10 - EC12 TPH-CWG - Aliphatic > EC12 - EC16	mg/kg mg/kg mg/kg	0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 0.001 7.1	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	21	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	41	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	80	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	80	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10 10	MCERTS NONE	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)				< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1756516	BH3	None Supplied	0.5	Light brown clay and sand with gravel.
1756517	BH3	None Supplied	1	Light brown clay.
1756518	BH3	None Supplied	1.7	Light brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

t: 01322 665566 **f:** 01322 661480 **e:**

Analytical Report Number: 21-54824

Project / Site name: Holloway Prison Samples received on: 02/02/2021

Your job number: WIE16172 Samples instructed on/ 03/02/2021

Analysis started on:

Your order number: 107965 Analysis completed by: 11/02/2021

Report Issue Number: 1 **Report issued on:** 11/02/2021

Samples Analysed: 10 soil samples

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Sample Reference				1758624	1758625	1758626	1758627	1758628
Jampie Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Depth (m)				1.00	2.00	0.50	0.50	2.00
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	21	19	22	23
Total mass of sample received	kg	0.001	NONE	0.7	0.7	0.7	0.7	0.7
	-							
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Organic Matter	%	0.1	MCERTS	0.9	1.6	0.7	2.5	0.4
pH - Automated	pH Units	N/A	MCERTS	8.8	8.1	8.4	8.8	7.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.9	0.7	1.4	0.4
Speciated PAHs								
•	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Naphthalene Acenaphthylene								
Naphthalene Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 0.3 < 0.05 0.24 0.23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Lab Sample Number			1758624	1758625	1758626	1758627	1758628	
Sample Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	0.50	0.50	2.00
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time taken	1	-	1	None Supplied	None Supplied	моне заррнеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					<u> </u>			
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	18	19	12	15	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	44	42	72	83	35
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.5	1.4	1.3	1.4
, , , , ,	mg/kg	0.2	MCERTS	0.5	0.9	< 0.2	2.1	1.7
Boron (water soluble)	mg/kg	0.2	MCERTS					
Cadmium (aqua regia extractable)	mg/kg	4	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)		1	MCERTS	44	58	46	47	54
Chromium (aqua regia extractable)	mg/kg			44	58	46	47	54
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	22	31	28	40	29
Lead (aqua regia extractable)				17	19	27	56	18
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.6	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.61	0.56	1.4	1.2	0.54
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	50	47	36	44
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	79	100	79	89	94
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	66	93	73	75	81
Monoaromatics & Oxygenates	μg/kg	1	MCERTS	.10	. 1 0	.10	. 1.0	.10
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	_	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCER 13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			T-					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
II II CWG - Alolliauc (LCJ - LCTT)	91.19			< 10	< 10	< 10	< 10	< 10

Lab Sample Number				1758624	1758625	1758626	1758627	1758628
Sample Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	0.50	0.50	2.00
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
V00-	<u> </u>	5						
VOCs			100 17025					
Chloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE ISO 1703E	-	-	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μα/kg	1	MCERTS MCERTS	-	-	-	< 1.0	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg μα/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Trichloromethane	μg/kg μα/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-Dichloroethane		1	MCERTS				< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Benzene		1	MCERTS	-	-	-	< 1.0	< 1.0
Tetrachloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Dibromomethane Bromodichloromethane	μg/kg	1	MCERTS	-	-		< 1.0 < 1.0	< 1.0 < 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	_		_	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025				< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	<u>-</u>	<u> </u>	-	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS				< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025				< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	_		-	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	NONE	_	_		< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	_		< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	_	_	_	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS				< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	_	_	-	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	_	-	-	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0

Lab Sample Number				1758624	1758625	1758626	1758627	1758628
Sample Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		1.00	2.00	0.50	0.50	2.00		
Date Sampled	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
L,2,3-Trichlorobenzene μg/kg 1 ISO 17025			-	-	-	< 1.0	< 1.0	

				1750504	1750505	1750505	4750607	1750500
Lab Sample Number				1758624	1758625	1758626	1758627	1758628
Sample Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	0.50	0.50	2.00
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken			T	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs			<u> </u>					
Aniline	mg/kg	0.1	NONE		_		< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	_		-	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS		_		< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS		-		< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS		_		< 0.2	< 0.2
	mg/kg	0.1	MCERTS		_		< 0.1	< 0.1
1,2-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS	-		-	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.1	MCERTS		_	-	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-		-	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	_	_		< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-		-	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	_	_		< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS		_		< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	_	_	_	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	_		< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS				< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS				< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE				< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	_	-	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	_		< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-		< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	_	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	_	_	_	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	_	_	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	_	-	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	_	-	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05

Your Order No: 107965

Lab Sample Number				1758624	1758625	1758626	1758627	1758628
Sample Reference				WS02	WS02	TP11	WS11	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	0.50	0.50	2.00
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	< 0.05
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	1	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

- ·				1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	3.00	1.50	2.50
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	23	23	33	21
Total mass of sample received	kg	0.001	NONE	1	0.7	0.9	0.7	1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	=	=	=	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-	Not-detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.005	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.005	-	-	-	-
oH - Automated Organic Matter	pH Units	N/A 0.1	MCERTS MCERTS	9.5 3.3	-	-	7.5 5.8	-
Organic Matter	%	0.1	MCERTS	3.3	_	-	5.8	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.9	-	-	3.3	-
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	
								-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05	-
, ,	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	-	-		- - -
Acenaphthene							< 0.05	
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05 < 0.05	-
Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	-	-	< 0.05 < 0.05 < 0.05	-
Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5	- - -	- - -	< 0.05 < 0.05 < 0.05 < 0.05	- - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27		- - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	- - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5		- - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	- - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5		- - - - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5 1.1			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5 1.1 1.4 0.59			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Flioranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5 1.1 1.4 0.59 1.4			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	- - - - - - - - - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5 1.1 1.4 0.59 1.4 0.68			< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pryrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 1.5 0.27 2.5 2.3 1.5 1.1 1.4 0.59 1.4 0.68 < 0.05	- - - - - - - - - - - - -		< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	

				1750600	4750600	1750501	1750600	4750600
Lab Sample Number				1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	3.00	1.50	2.50
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	23	-	-	16	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	170	-	-	120	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.99	-	-	1.2	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	-	-	3.3	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	< 4.0	-
Chromium (III)	mg/kg	1	NONE	28	-	-	43	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	-	-	44	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	120	-	-	74	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	150	-	-	270	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	1.7	-
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	2.1	-	-	1.7	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	26	-	-	26	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	79	-	-	89	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	200	-	-	91	-
Monoaromatics & Oxygenates								
Benzene 	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg 	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	26	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	32	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	11	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	76	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	76	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001						
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
			MCERTS MCERTS	< 0.001 13	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001						
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg	0.001	MCERTS	13	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg mg/kg mg/kg	0.001 1 2	MCERTS MCERTS	13 19	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg	0.001 1 2 10	MCERTS MCERTS MCERTS	13 19 15	< 1.0 < 2.0 < 10			
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 1 2 10 10	MCERTS MCERTS MCERTS MCERTS	13 19 15 40	< 1.0 < 2.0 < 10 < 10			

Lab Sample Number				1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	3.00	1.50	2.50
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		ň						
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Chloroethane	μg/kg 	1	NONE	-	-	-	< 1.0	-
Bromomethane	μg/kg 	1	ISO 17025	-	-	-	< 1.0	-
Vinyl Chloride	μg/kg 	1	NONE	-	-	-	< 1.0	-
Trichlorofluoromethane	μg/kg 	1	NONE	-	-	-	< 1.0	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg "	1	ISO 17025	-	-	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg "	1	MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Trichloromethane	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Trans-1,2-dichloroethene	μg/kg 	1	NONE	-	-	-	< 1.0	-
Benzene	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
Tetrachloromethane	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
1,2-Dichloropropane	μg/kg "	1	MCERTS	-	-	-	< 1.0	-
Trichloroethene	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
Dibromomethane	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
Bromodichloromethane	μg/kg 	1	MCERTS	-	-	-	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,3-Dichloropropane	μg/kg	1	ISO 17025 ISO 17025	-	-	-	< 1.0	-
Dibromochloromethane	μg/kg	1		-	-	-	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE ISO 17025	-	-	-	< 1.0	-
1,2-Dibromoethane	μg/kg	1		-	-	-	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	< 1.0	-
Ethylbenzene		1	MCERTS	-	-	-	< 1.0	-
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	-
Styrene Tribromomethane	μg/kg μg/kg	1	NONE	-	-	-	< 1.0 < 1.0	-
o-Xylene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	-
	μg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,2,2-Tetrachloroethane Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
n-Propylbenzene	µg/kg	1	ISO 17025	<u>-</u>	-	<u> </u>	< 1.0	-
2-Chlorotoluene	µg/kg	1	MCERTS	<u>-</u>	-	<u> </u>	< 1.0	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	<u> </u>	< 1.0	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	<u>-</u>	<u>-</u>	<u> </u>	< 1.0	-
tert-Butylbenzene	µg/kg	1	MCERTS				< 1.0	
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
11,2-DICHIOLODEHZEHE	, .							
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-

Lab Sample Number	<u> </u>			1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.20	2.00	3.00	1.50	2.50		
Date Sampled		01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	1	-	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
,2,3-Trichlorobenzene μg/kg 1 ISO 17025			-	-	-	< 1.0	-	

Lab Sample Number				1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	3.00	1.50	2.50
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	1	š						
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
2-Methylphenol	mg/kg	0.3	MCERTS MCERTS	-	-	-	< 0.3	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Nitrobenzene	mg/kg mg/kg	0.3	NONE	-	-	-	< 0.3	-
4-Methylphenol	mg/kg	0.2	MCERTS				< 0.2	
Isophorone	mg/kg	0.2	MCERTS		-	-	< 0.2	-
2-Nitrophenol	mg/kg	0.3	MCERTS				< 0.3	
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3 < 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
1,2,4-Trichlorobenzene Naphthalene	mg/kg	0.05	MCERTS	-			< 0.05	-
·	mg/kg	0.3	MCERTS				< 0.03	-
2,4-Dichlorophenol 4-Chloroaniline	mg/kg	0.1	NONE	-	-		< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS				< 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE				< 0.1	
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	_	_		< 0.1	_
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	_	_	-	< 0.2	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	< 0.1	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	_	-	< 0.1	-
Dimethylphthalate	mg/kg	0.1	MCERTS	_	_	-	< 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	_	-	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	-	-	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MUEKIS	-	-	-	< 0.05	-

Your Order No: 107965

Lab Sample Number				1758629	1758630	1758631	1758632	1758633
Sample Reference				WS12	WS12	WS12	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	3.00	1.50	2.50
Date Sampled				01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	1	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	1	ı	1	-	,
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1758629	WS12	0.20	128	Loose Fibres	Chrysotile	0.005	0.005

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1758624	WS02	None Supplied	1	Brown clay with gravel.
1758625	WS02	None Supplied	2	Brown clay with gravel.
1758626	TP11	None Supplied	0.5	Brown clay with gravel and vegetation.
1758627	WS11	None Supplied	0.5	Brown clay and sand with gravel.
1758628	WS11	None Supplied	2	Brown clay with gravel.
1758629	WS12	None Supplied	0.2	Brown sand with gravel.
1758630	WS12	None Supplied	2	Brown clay.
1758631	WS12	None Supplied	3	Brown clay with vegetation.
1758632	WS01	None Supplied	1.5	Grey clay with gravel.
1758633	WS01	None Supplied	2.5	Brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Joanna Taylor

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: joanna.taylor@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-54995

Project / Site name: Holloway Prison Samples received on: 03/02/2021

Your job number: WIE16172 Samples instructed on/ 04/02/2021

Analysis started on:

Your order number: 108002 Analysis completed by: 11/02/2021

Report Issue Number: 1 Report issued on: 11/02/2021

Samples Analysed: 12 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 108002

Lab Sample Number				1759684	1759685	1759686	1759687	1759688
Sample Reference				WS06	WS03	WS03	WS07A	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.60	0.30
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.7	8.9	19	17	4.0
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.7	0.7	1.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	9.5	11.6	7.8	8.8	8.4
Organic Matter	%	0.1	MCERTS	1.2	1.4	0.2	0.3	0.4
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0068	0.0082	0.0012	0.0018	0.0023
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.7	0.8	0.1	0.2	0.2
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS		0.42	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	_	14	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	_	3.3	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	_	20	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	2.2	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	_	8.2	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	5.6	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	1.8	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	1.6	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	0.86	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	0.55	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.63	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	0.32	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	0.42	< 0.05	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	-	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH					-		-	
Total WAC-17 PAHs	mg/kg	0.85	NONE		59.3	< 0.85	< 0.85	< 0.85

Lab Sample Number				1759684	1759685	1759686	1759687	1759688
Sample Reference				WS06	WS03	WS03	WS07A	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.60	0.30
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time taken	1	_	1	None Supplied	None Supplied	моне заррнеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-							
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	11	21	18	13	17
Barium (aqua regia extractable)	mg/kg	1	MCERTS	46	60	21	44	44
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.43	0.46	1.0	1.0	0.56
, , , , ,	mg/kg	0.2	MCERTS	0.45	1.7	1.4	1.3	0.30
Boron (water soluble)	mg/kg	0.2	MCERTS					
Cadmium (aqua regia extractable)	mg/kg	4	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1	NONE	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)		1	MCERTS	16	22	38	38	22
Chromium (aqua regia extractable)	mg/kg			16	22	38	39	23
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	7.1	16	33	23	22
Lead (aqua regia extractable)				23	64	15	21	50
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.98	1.0	0.51	0.59	1.1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	16	42	38	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	30	31	68	68	43
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	25	66	77	71	81
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	μg/kg	1	MCERTS					
Toluene	_	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	ру/ку	1	PICERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons	T			•			1	•
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	12	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	20	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	78	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	300	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	110	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	410	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.9	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	41	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	60	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	130	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	390	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	240	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	630	< 10	< 10	< 10
(200 20)			I	` 10	030	` 10	` 10	` 10

Lab Sample Number				1759684	1759685	1759686	1759687	1759688
Sample Reference				WS06	WS03	WS03	WS07A	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.60	0.30
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		둫	>					
	_	Limit of detection	Accreditation Status					
Analytical Parameter (Soil Analysis)	Units	f de	edit					
(Soli Analysis)	66	tec	atio					
		ti or	š					
VOCs	-		<u>.</u>					
Chloromethane	μg/kg	1	ISO 17025	_	_	_	_	< 1.0
Chloroethane	μg/kg	1	NONE	_	-	_	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	_	_	_	_	< 1.0
Vinyl Chloride	μg/kg	1	NONE	_	_	_	_	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	_	_	_	_	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	_	_	_	_	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025		-			< 1.0
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-	-	-	_	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	-	-	-	_	< 1.0
1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Z,Z-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	_		_	< 1.0
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS		-	-		< 1.0
1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
	μg/kg μg/kg	1	NONE					
Trans-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Benzene		1	MCERTS	-			-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloroethene	μg/kg			-	-	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromodichloromethane	μg/kg		MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	μg/kg "	1	ISO 17025	-	-	-	-	< 1.0
Tetrachloroethene	μg/kg 	1	NONE	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg 	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
			-	_	-		-	-

Lab Sample Number				1759684	1759685	1759686	1759687	1759688
Sample Reference				WS06	WS03	WS03	WS07A	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.50	0.30	1.00	0.60	0.30		
Date Sampled		02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021		
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0

SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	•	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-		-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3

Your Order No: 108002

Lab Sample Number				1759684	1759685	1759686	1759687	1759688
Sample Reference				WS06	WS03	WS03	WS07A	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.60	0.30
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	_	_	-	_	< 0.007

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				1759689	1759690	1759691	1759692	1759693
Sample Reference				WS04	WS09	WS08	WS08	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	0.50	1.00	2.00	0.50
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	20	20	18	20
Total mass of sample received	kg	0.001	NONE	1.2	1.0	0.7	0.7	1.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics pH - Automated Oversign Matter	pH Units	N/A 0.1	MCERTS MCERTS	7.9	8.3	8.5	7.6	7.9
Organic Matter	N/A	0.001	MCERTS	0.1	1.1	1.2	0.2	2.5
Fraction Organic Carbon (FOC) Total Organic Carbon (TOC)	%	0.001	MCERTS	< 0.0010 < 0.1	0.0063 0.6	0.0067 0.7	0.0013 0.1	0.015 1.5
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	_	-	_	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	_	_	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	_	-	_	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	_	_	_	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	_	_	0.21
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	0.33
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	0.24
			_					
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	0.19
. ,	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	-	-	-	< 0.19
Chrysene Benzo(b)fluoranthene								
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	-	-	-	< 0.05 < 0.05
Chrysene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05		- - -	- - -	< 0.05 < 0.05 < 0.05
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	- - -	- - -	- - -	< 0.05 < 0.05 < 0.05 < 0.05
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05			- - - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05			- - - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Lab Sample Number				1759689	1759690	1759691	1759692	1759693
Sample Reference				WS04	WS09	WS08	WS08	WS05
Sample Number					None Supplied		None Supplied	None Supplied
•				None Supplied		None Supplied		
Depth (m)				2.00	0.50	1.00	2.00	0.50
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	12	20	14	13
Barium (aqua regia extractable)	mg/kg	1	MCERTS	29	53	110	25	81
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.98	1.7	1.3	0.94
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.3	1.6	1.3	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	48	37	40	48	32
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	49	37	40	48	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	29	51	27	40
Lead (aqua regia extractable)	mg/kg	1	MCERTS	15	48	220	18	120
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.5	0.4	< 0.3	0.5
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.4	1.0	1.7	0.47	1.1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	45	35	45	48	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	88	74	88	83	68
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	82	79	130	82	69
			•	•				
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	-							
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
				·		120	120	

Lite and North				1750600	1750000	1750001	1750000	1750000
Lab Sample Number				1759689	1759690	1759691	1759692	1759693
Sample Reference				WS04	WS09	WS08	WS08	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	0.50	1.00	2.00	0.50
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Limit of detection	>					
Analytical Parameter	_	<u> </u>	Accreditation Status					
(Soil Analysis)	Units	de	creditat Status					
(Con raidiyolo)	v,	te ct	s tio					
		ġ	_					
VOCs					=		=	
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	_	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	_	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	_	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	_	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	_	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tribromomethane	μg/kg	1	NONE	< 1.0	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	_	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	_	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	_	_	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	_	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	_	_	-	-

Lab Sample Number				1759689	1759690	1759691	1759692	1759693
Sample Reference				WS04	WS09	WS08	WS08	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	0.50	1.00	2.00	0.50
Date Sampled			02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-

SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	-	•	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-		-	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-		-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-		-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	=	-	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	=	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	=	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	=	-	-	-

Your Order No: 108002

Lab Sample Number				1759689	1759690	1759691	1759692	1759693
Sample Reference				WS04	WS09	WS08	WS08	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	0.50	1.00	2.00	0.50
Date Sampled				02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	ı	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	1	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	-	-	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Environmental Science

Analytical Report Number: 21-54995 Project / Site name: Holloway Prison

Your Order No: 108002

Lab Sample Number				1759694	1759695
Sample Reference	WS10	BH13			
Sample Number	None Supplied	None Supplied			
Depth (m)				0.50	1.00
Date Sampled				02/02/2021	02/02/2021
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	19
Total mass of sample received	kg	0.001	NONE	0.9	0.9

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	Chrysotile	-
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2	8.4
Organic Matter	%	0.1	MCERTS	2.1	0.3
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.012	0.0017
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.2	0.2

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.38	2.3
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.8
Fluoranthene	mg/kg	0.05	MCERTS	0.73	3.1
Pyrene	mg/kg	0.05	MCERTS	0.67	2.6
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.48	1.6
Chrysene	mg/kg	0.05	MCERTS	0.35	1.5
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.53	1.3
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.2	0.55
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.41	0.93
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.24	0.51
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.4	0.66
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05

Total PAH

Total WAC-17 PAHs	mg/kg	0.85	NONE	4.39	15.8

Your Order No: 108002

Lab Sample Number				1759694	1759695	
Sample Reference				WS10	BH13	
Sample Number				None Supplied	None Supplied	
Depth (m)				0.50	1.00	
Date Sampled	02/02/2021	02/02/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	21	13	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	340	55	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.2	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	2.0	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	
Chromium (III)	mg/kg	1	NONE	39	42	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	40	42	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	170	32	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190	130	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.8	< 0.3	
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.8	1.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	44	42	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	83	89	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	240	83	

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	21	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	400	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	26	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	420	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	450	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	91	13
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	99	22
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	99	22

Lab Sample Number				1759694	1759695
Sample Reference				WS10	1759695 BH13
Sample Number					
•				None Supplied 0.50	None Supplied 1.00
Depth (m)					
Date Sampled Time Taken				02/02/2021	02/02/2021
Time Taken		-	1	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
VOCs					
Chloromethane	μg/kg	1	ISO 17025	-	-
Chloroethane	μg/kg	1	NONE	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-
Benzene	μg/kg	1	MCERTS	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-
Toluene	μg/kg	1	MCERTS	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	_	_
Tetrachloroethene	μg/kg	1	NONE	_	_
1.2-Dibromoethane	μg/kg	1	ISO 17025	_	_
Chlorobenzene	μg/kg	1	MCERTS	-	_
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	_
Ethylbenzene	μg/kg	1	MCERTS		_
p & m-Xylene	μg/kg	1	MCERTS	_	_
Styrene	μg/kg	1	MCERTS		
Tribromomethane	μg/kg	1	NONE	<u> </u>	-
o-Xylene	μg/kg	1	MCERTS	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-
Isopropylbenzene	μg/kg	1	MCERTS	<u> </u>	-
Bromobenzene	μg/kg	1	MCERTS	<u> </u>	-
n-Propylbenzene	μg/kg	1	ISO 17025	<u>-</u>	-
2-Chlorotoluene	μg/kg	1	MCERTS	<u> </u>	-
	μg/kg μg/kg	1	MCERTS	-	-
4-Chlorotoluene	μg/kg	1	ISO 17025	<u>-</u>	-
1,3,5-Trimethylbenzene		1	MCERTS		
tert-Butylbenzene	μg/kg μg/kg	1	ISO 17025	-	-
1,2,4-Trimethylbenzene		1	MCERTS	-	-
sec-Butylbenzene	μg/kg			-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-

Your Order No: 108002

Lab Sample Number		1759694	1759695		
Sample Reference				WS10	BH13
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	1.00			
Date Sampled	02/02/2021	02/02/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
1,2-Dichlorobenzene	μg/kg	1	MCERTS		-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-

SVOCs

SVOCs					
Aniline	mg/kg	0.1	NONE	-	-
Phenol	mg/kg	0.2	ISO 17025	1	-
2-Chlorophenol	mg/kg	0.1	MCERTS	1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	1	1
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	1	1
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	1	1
Diethyl phthalate	mg/kg	0.2	MCERTS	1	1
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-
Anthraguinone	mg/kg	0.3	MCERTS	-	-

Environmental Science

Analytical Report Number: 21-54995 Project / Site name: Holloway Prison

Your Order No: 108002

Lab Sample Number				1759694	1759695	
Sample Reference				WS10	BH13	
Sample Number				None Supplied	None Supplied	
Depth (m)				0.50	1.00	
Date Sampled	02/02/2021	02/02/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Fluoranthene	mg/kg	0.05	MCERTS	-	-	
Pyrene	mg/kg	0.05	MCERTS	-	-	
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	
Chrysene	mg/kg	0.05	MCERTS	-	-	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	
Dibenz(a,h)anthracene	mg/kg		MCERTS	-	-	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	

PCBs by GC-MS

PCB Congener 28	mg/kg	0.001	MCERTS	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-

Total PCBs by GC-MS

Total PCBs	mg/kg	0.007	MCERTS	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1759694	WS10	0.50	121	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1759684	WS06	None Supplied	0.5	Brown clay and sand with gravel and vegetation.
1759685	WS03	None Supplied	0.3	Grey clay and sand with gravel.
1759686	WS03	None Supplied	1	Brown clay.
1759687	WS07A	None Supplied	0.6	Brown clay and sand with gravel and vegetation.
1759688	WS04	None Supplied	0.3	Brown clay and sand with gravel.
1759689	WS04	None Supplied	2	Brown clay and sand.
1759690	WS09	None Supplied	0.5	Brown clay and sand with gravel and vegetation.
1759691	WS08	None Supplied	1	Brown clay and sand with gravel and vegetation.
1759692	WS08	None Supplied	2	Brown clay and sand.
1759693	WS05	None Supplied	0.5	Brown clay and sand with gravel and vegetation.
1759694	WS10	None Supplied	0.5	Brown clay and sand with gravel and vegetation.
1759695	BH13	None Supplied	1	Brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)		In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-55000

Project / Site name: Holloway Prison Samples received on: 03/02/2021

Your job number: WIE16172 Samples instructed on/ 04/02/2021

Analysis started on:

Your order number: 108002 Analysis completed by: 11/02/2021

Report Issue Number: 1 Report issued on: 11/02/2021

Samples Analysed: 3 10:1 WAC samples

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-	55000				
					Client:	WATERMAN	
Location		Hollow	ay Prison				
Lab Reference (Sample Number)		1759753	/ 1759754		Landfill	Waste Acceptano Limits	ce Criteria
Sampling Date		02/0	2/2021			Stable Non-	
Sample ID		W	/S04		To ant March	reactive	Ussandana
Depth (m)	0.30				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.1				3%	5%	6%
Loss on Ignition (%) **	1.2					-	10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10			-	500	-	
Total PAH (WAC-17) (mg/kg)	< 0.85			-	100		
pH (units)**	8.1					>6	
Acid Neutralisation Capacity (mol / kg)	2.5					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance l	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using bs EN	12457-2 at L/S 10	ri/kg (mg/kg)
Arsenic *	0.0041			0.0368	0.5	2	25
Barium *	0.0154			0.139	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0018			0.016	0.5	10	70
Copper *	0.0087			0.079	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0080			0.0720	0.5	10	30
Nickel *	0.0040			0.037	0.4	10	40
Lead *	0.0079			0.072	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.023			0.21	4	50	200
Chloride *	3.1			28	800	15000	25000
Fluoride	0.25			2.2	10	150	500
Sulphate *	3.0			27	1000	20000	50000
TDS*	45			410	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	5.88			53.2	500	800	1000
. <u> </u>							
Leach Test Information							
Stone Content (%)	< 0.1		+				
Sample Mass (kg)	1.0			Ì	1	1	
Dry Matter (%)	96				1	†	
Moisture (%)	4.0						
			1		1	1	
Describe and a superior of the	-1-1				* 11/40		-1
Results are expressed on a dry weight basis, after correction for m	ioisture content whe	ere applicable.			T= UKAS accredit	ted (liquid eluate an	aiysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-55000				
•						
				GI' · · · I		
				Client:	WATERMAN	
Location		Holloway Prison				
Lab Reference (Sample Number)		1750755 / 1750756		Landfill \	e Criteria	
		1759755 / 1759756			Limits	
Sampling Date Sample ID		02/02/2021 WS04		Stable Non reactive		
Depth (m)		2.00	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						
ГОС (%)**	0.1			3%	5%	6%
oss on Ignition (%) **	3.5					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	7.0				>6	
Acid Neutralisation Capacity (mol / kg)	0.00				To be evaluated	To be evaluated
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test
PC EN 124E7 2 proparation utilizing and over and leaching				using BS EN	12457-2 at L/S 10	l/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg			
Arsenic *	0.0025		0.0200	0.5	2	25
Barium *	0.0419		0.339	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0011		0.0088	0.5	10	70
Copper *	0.011		0.088	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	0.0088		0.0712	0.5	10	30
Vickel *	0.0025		0.021	0.4	10	40
_ead *	0.0012		< 0.010	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.014		0.11	4	50	200
Chloride *	7.1		57	800	15000	25000
Fluoride	1.2		10	10	150	500
Sulphate *	30		240	1000	20000	50000
TDS*	120		940	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
DOC	4.90		39.7	500	800	1000
Leach Test Information						
.cac.ii rest Iliiviillativii						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.2					
Ory Matter (%)	82					
Moisture (%)	18					
				-		
				-		
				*= UKAS accredit	1	L

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Location Lab Reference (Sample Number)	3 8 01 9 7 7 005 2	21-55000 Holloway Prison 1759757 / 1759758 02/02/2021 WS10 0.50		Inert Waste Landfill 3% 6000 1 500 100 Limit valu	WATERMAN Waste Acceptanc Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >6 To be evaluated es for compliance le 12457-2 at L/S 10 2 100 1 10 50 0.2	Hazardous Waste Landfill 6% 10% To be evaluated eaching test
Sampling Date Sample ID	3 8 01 9 7 7 005 2	1759757 / 1759758 02/02/2021 WS10	10:1 mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0695 0.030	Landfill	Waste Acceptance Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >-6 To be evaluated es for compliance in 12457-2 at L/S 10 2 100 1 10 50 0.2	Hazardous Waste Landfill 6% 10% To be evaluate eaching test 1/kg (mg/kg) 25 300 5 70 100 2
Company Comp	3 8 01 9 7 7 005 2	1759757 / 1759758 02/02/2021 WS10	10:1 mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0695 0.030	Landfill	Waste Acceptance Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >-6 To be evaluated es for compliance in 12457-2 at L/S 10 2 100 1 10 50 0.2	Hazardous Waste Landfil 6% 10% To be evaluate eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Company Comp	3 8 01 9 7 7 005 2	1759757 / 1759758 02/02/2021 WS10	10:1 mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0695 0.030	Inert Waste Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >6 To be evaluated es for compliance le x12457-2 at L/S 10 2 100 11 10 50 0.2	Hazardous Waste Landfil 6% 10% To be evaluate eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Company Comp	3 8 01 9 7 7 005 2	1759757 / 1759758 02/02/2021 WS10	10:1 mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0695 0.030	Inert Waste Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >6 To be evaluated es for compliance le x12457-2 at L/S 10 2 100 11 10 50 0.2	Hazardous Waste Landfil 6% 10% To be evaluate eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Sampling Date Sample ID	3 8 01 9 7 7 005 2	02/02/2021 WS10	10:1 mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Inert Waste Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5% >6 To be evaluated es for compliance le x12457-2 at L/S 10 2 100 11 10 50 0.2	Hazardous Waste Landfill 6% 10% To be evaluate eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Depth (m) Solid Waste Analysis TOC (%)** 1.1 1.2 1.2 1.3	3 8 01 9 7 7 005 2	WS10	mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	Stable Non-reactive HAZARDOUS waste in non-hazardous Landfill 5% >6 To be evaluated es for compliance le 12457-2 at L/S 10 2 100 1 10 50 0.2	Waste Landfill 6% 10% To be evaluate eaching test 0//kg (mg/kg) 25 300 5 70 100 2
Depth (m) Solid Waste Analysis TOC (%)** 1.1 1.2 1.2 1.3	3 8 01 9 7 7 005 2	WS10	mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	### HAZARDOUS ### waste in non- hazardous Landfill 5%	Waste Landfil 6% 10% To be evaluate eaching test 0//kg (mg/kg) 25 300 5 70 100 2
Solid Waste Analysis 1.1	3 8 01 9 7 7 005 2	0.50	mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Landfill 3% 6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	waste in non-hazardous Landfill 5% >6 To be evaluated es for compliance le 12457-2 at L/S 10 2 100 11 10 50 0.2	Waste Landfill 6% 10% To be evaluate eaching test 0//kg (mg/kg) 25 300 5 70 100 2
TOC (%)** Loss on Ignition (%) ** Som of PCBs (mg/kg) ** Sum of PCBs (mg/kg) ** Sum of PCBs (mg/kg) ** Som of PCBs (mg/k	3 8 01 9 7 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030			10% To be evaluated eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Loss on Ignition (%) ** 5.0 BTEX (μg/kg) ** < 1.0	3 8 01 9 7 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030			10% To be evaluated eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
### STEX (µg/kg) ** Sum of PCBs (mg/kg) **	3 8 01 9 7 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	6000 1 500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5		
Sum of PCBs (mg/kg) ** < 0.0	3 8 01 9 7 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	1 500 100 100 100 100 100 100 100 100 10	>6 To be evaluated es for compliance le N 12457-2 at L/S 10 2 100 1 1 10 50 0.2	
Mineral Oil (mg/kg) 450 Total PAH (WAC-17) (mg/kg) 3.62 pH (units)** 8.4 Acid Neutralisation Capacity (mol / kg) 2.5 Eluate Analysis 10:1 (BS EN 12457 - 2 preparation utilising end over end leaching procedure) mg/ Arsenic * 0.002 Barium * 0.022 Cadmium * 0.000 Chromium * 0.000 Mercury * < 0.00	3 8 8 01 9 7 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	500 100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	>6 To be evaluated es for compliance le 12457-2 at L/S 10 2 100 1 10 50 0.2	To be evaluated eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Total PAH (WAC-17) (mg/kg) pH (units)** 8.4 Acid Neutralisation Capacity (mol / kg) 2.5 Eluate Analysis (BS EN 12457 - 2 preparation utilising end over end leaching procedure) Arsenic * Barium * Cadmium * Chromium * Copper * Molybdenum * Nickel * Lead * Antimony * Selenium * Chloride * Selenium * Chloride * Ch	3 8 01 9 7 7 05 2 0 0		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	100 Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5		To be evaluated eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
## PH (units)** Acid Neutralisation Capacity (mol / kg) ## PEluate Analysis 10:1 ## Eluate Analysis ## Eluate Analysis ## Eluate Analysis 10:1 ## Eluate Analysis ## Eluate Analysis ## Eluate Analysis ## Eluate Analysis 10:1 ## Eluate Analysis	3 8 01 9 7 7 05 2 0 0		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	>6 To be evaluated es for compliance le 12457-2 at L/S 10 2 100 1 10 50 0.2	To be evaluated eaching test 0 1/kg (mg/kg) 25 300 5 70 100 2
Acid Neutralisation Capacity (mol / kg) 2.5	3 8 001 9 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030		To be evaluated es for compliance le 12457-2 at L/S 10 2 100 1 1 10 50 0.2	To be evaluated eaching test 0 l/kg (mg/kg) 25 300 5 70 100 2
Bilate Analysis 10:3	3 8 001 9 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	Limit valu using BS EN 0.5 20 0.04 0.5 2 0.01 0.5	es for compliance le 12457-2 at L/S 10 2 100 1 10 50 0.2	25 300 5 70 100 2
(BS EN 12457 - 2 preparation utilising end over end leaching procedure) Arsenic * 0.002 Barium * 0.002 Cadmium * 0.000 Copper * 0.000 Mercury * 0.000 Molybdenum * 0.000 Nickel * 0.000 Lead * 0.000 Antimony * 0.000 Selenium * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Sulphate * 0.000 Mercury * 0.000 Antimony * 0.000 Selenium * 0.000 Chloride * 0.0000 Chloride * 0.0000 Chloride * 0.0000 Chloride * 0.00000 Chloride * 0.0000000000000000000000000000000000	3 8 001 9 7 005 2		mg/kg 0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	0.5 20 0.04 0.5 2 0.01 0.5	2 100 10 10 50 0.2	25 300 5 70 100 2
rocedure) mg/ Arsenic * 0.002 Barium * 0.022 Cadmium * 0.000 Chromium * 0.000 Copper * 0.000 Mercury * 0.000 Molybdenum * 0.000 Molybdenum * 0.000 Antimony * 0.000 Antimony * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Sulphate * 0.060 Sulphate * 0.060 Sulphate * 0.060 Phenol Index (Monohydric Phenols) * 0.000	3 8 01 9 7 05 2 0 0		0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2	25 300 5 70 100 2
rocedure) mg/ Arsenic * 0.002 Barium * 0.022 Cadmium * 0.000 Chromium * 0.000 Copper * 0.000 Mercury * 0.000 Molybdenum * 0.000 Molybdenum * 0.000 Antimony * 0.000 Antimony * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Sulphate * 0.060 Sulphate * 0.060 Sulphate * 0.060 Phenol Index (Monohydric Phenols) * 0.000	3 8 01 9 7 05 2 0 0		0.0173 0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic * 0.002 Barium * 0.022 Cadmium * 0.000 Chromium * 0.000 Copper * 0.000 Mercury * 0.000 Molybdenum * 0.000 Nickel * 0.000 Antimony * 0.000 Selenium * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Sulphate * 0.000 Chloride * 0.600 Sulphate * 0.600 Phenol Index (Monohydric Phenols) * 0.000	8 01 9 7 05 2 0 0		0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	20 0.04 0.5 2 0.01 0.5	100 1 10 50 0.2	300 5 70 100 2
Barium * 0.022 Cadmium * < 0.000 Chromium * 0.000 Copper * 0.000 Mercury * < 0.00 Molybdenum * 0.000 Molybdenum * 0.000 Antimony * 0.000 Selenium * < 0.000 Capper * 0.000 Antimony * 0.000 Selenium * 0.000 Chloride * 0.000 Chloride * 0.000 Chloride * 0.000 Sulphate * 0.000 Antimony * 0.000 Chloride * 0.600 Sulphate * 0.600 Antimony * 0.600 Chloride * 0.600 Sulphate * 0.600 Antimony * 0.600 Chloride * 0.6000 Chloride * 0.60000 Chloride * 0.600000 Chloride * 0.60000000000000000000000000000000000	8 01 9 7 05 2 0 0		0.171 < 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	20 0.04 0.5 2 0.01 0.5	100 1 10 50 0.2	300 5 70 100 2
Cadmium * < 0.00	01 9 7 05 2		< 0.0008 0.0071 0.066 < 0.0050 0.0695 0.030	0.04 0.5 2 0.01 0.5	1 10 50 0.2	5 70 100 2
Chromium * 0.000 Copper * 0.008 Mercury * < 0.00	9 7 05 2 0		0.0071 0.066 < 0.0050 0.0695 0.030	0.5 2 0.01 0.5	10 50 0.2	70 100 2
Copper * 0.008 Mercury * < 0.00	7 05 2 0		0.066 < 0.0050 0.0695 0.030	2 0.01 0.5	50 0.2	100 2
Mercury * < 0.00	05 2 0		< 0.0050 0.0695 0.030	0.01 0.5	0.2	2
Molybdenum * 0.005 Nickel * 0.004 Lead * 0.007 Antimony * < 0.00	0		0.0695 0.030	0.5		
Nickel * 0.00° Lead * 0.00° Antimony * < 0.00°				0.4		
Antimony * < 0.00 Selenium * < 0.00 Zinc * 0.00e Chloride * 2.2 Fluoride 0.66 Sulphate * 4.4 TDS* 63 Phenol Index (Monohydric Phenols) * < 0.00	1		0.053		10	40
Selenium * < 0.00			0.053	0.5	10	50
Zinc * 0.006 Chloride * 2.2 Fluoride 0.60 Sulphate * 4.4 TDS* 63 Phenol Index (Monohydric Phenols) * < 0.0	17		< 0.017	0.06	0.7	5
Chloride * 2.2 Fluoride 0.60 Sulphate * 4.4 TDS* 63 Phenol Index (Monohydric Phenols) * < 0.0	40		< 0.040	0.1	0.5	7
Fluoride 0.60 Sulphate * 4.4 TDS* 63 Phenol Index (Monohydric Phenols) * < 0.0	7		0.051	4	50	200
Sulphate * 4.4 TDS* 63 Phenol Index (Monohydric Phenols) * < 0.0			16	800	15000	25000
TDS* 63 Phenol Index (Monohydric Phenols) * < 0.0			4.5	10	150	500
Phenol Index (Monohydric Phenols) * < 0.0			33	1000	20000	50000
			470	4000	60000	100000
DOC 6.59	.0		< 0.10	1	-	-
			49.5	500	800	1000
Leach Test Information						
Stone Content (%) < 0.	ı					
Sample Mass (kg) 0.90						
Dry Matter (%) 83						
Moisture (%)						
			+		1	
Results are expressed on a dry weight basis, after correction for moisture con		+			1	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1759753	WS04	None Supplied	0.3	Brown clay and sand with gravel.
1759755	WS04	None Supplied	2	Brown clay and sand.
1759757	WS10	None Supplied	0.5	Brown clay and sand with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil"	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	oride 10:1 WAC Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode. In-house method based on Use of Strength Adjustment Buffer for Ele Determination*		L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-55004

Project / Site name: Holloway Prison Samples received on: 02/02/2021

Your job number: WIE16172 Samples instructed on/ 04/02/2021

Analysis started on:

Your order number: 107965 Analysis completed by: 11/02/2021

Report Issue Number: Report issued on: 11/02/2021

Samples Analysed: 1 soil sample

Denoradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Environmental Science

Analytical Report Number: 21-55004 Project / Site name: Holloway Prison

Your Order No: 107965

Lab Sample Number				1759768
Sample Reference				WS11
Sample Number				None Supplied
Depth (m)				4.00
Date Sampled			01/02/2021	
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	23
Total mass of sample received	kg	0.001	NONE	0.9

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1759768	WS11	None Supplied	4	Brown clay with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

08/02/2021

Analytical Report Number: 21-55440

Project / Site name: Holloway Prison Samples received on: 04/02/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

Analysis completed by: 12/02/2021

Report Issue Number: 1 **Report issued on:** 12/02/2021

Samples Analysed: 2 soil samples

108024

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Environmental Science

Analytical Report Number: 21-55440 Project / Site name: Holloway Prison

Your Order No: 108024

Lab Sample Number	1762536	1762537			
Sample Reference				BH05	BH05
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	2.00
Date Sampled				03/02/2021	03/02/2021
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	23	24
Total mass of sample received	kg	0.001	NONE	1.2	1.2

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2	7.3
Organic Matter	%	0.1	MCERTS	0.2	< 0.1
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.001	< 0.0010
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	< 0.1

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	23
Barium (aqua regia extractable)	mg/kg	1	MCERTS	59	32
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	1	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	54	48
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	55	48
Copper (aqua regia extractable)	mg/kg	1	MCERTS	39	33
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	15
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.39	0.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	65	46
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	99	87
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	89

Monoaromatics & Oxygenates

rionour officies & oxygenates					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0

Your Order No: 108024

Lab Sample Number	1762536	1762537			
Sample Reference				BH05	BH05
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	2.00			
Date Sampled	03/02/2021	03/02/2021			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons	=				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10
		0.004	MCEDIC		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg			< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	2	MCERTS MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg			< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	8.4	NONE	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg		MCFRTS	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10 10	NONE	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	INOINL	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1762536	BH05	None Supplied	0.5	Brown clay with gravel.
1762537	BH05	None Supplied	2	Brown clay with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-55642

Project / Site name: Holloway Prison Samples received on: 08/02/2021

Your job number: WIE16172 Samples instructed on/ 09/02/2021

Analysis started on:

Your order number: 108044 Analysis completed by: 16/02/2021

Report Issue Number: 1 Report issued on: 16/02/2021

Samples Analysed: 3 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 108044

Lab Sample Number				1763799	1763800	1763801
Sample Reference				BH16	BH16	BH19
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	1.70	3.50	0.50			
Date Sampled	05/02/2021	05/02/2021	05/02/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	10	19	23
Total mass of sample received	kg	0.001	NONE	1.2	0.7	1.2
	•					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	10	8.3	8.1
Organic Matter	%	0.1	MCERTS	0.9	3.3	0.7
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0055	0.019	0.0039
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	1.9	0.4
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05
Coronene	mg/kg	0.05	NONE	-	-	< 0.05
Total PAH	ma/ka	0.85	NONE			
Total WAC-17 PAHs	mg/kg	0.05	NONE	-	-	< 0.85
Heavy Metals / Metalloids						
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	21	15	11
Barium (aqua regia extractable)	mg/kg	1	MCERTS	200	21	31
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.78	1.2	1.4
Boron (water soluble)	mg/kg	0.00	MCERTS	0.78	2.0	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	27	45	52
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	45	52
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	35	42
Lead (aqua regia extractable)	mg/kg	1	MCERTS	100	15	18
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	0.6	0.61
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	45	46
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	46	74	94
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	87	92

Your Order No: 108044

Lab Sample Number				1763799	1763800	1763801
Sample Reference				BH16	BH16	BH19
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.70	3.50	0.50
Date Sampled				05/02/2021	05/02/2021	05/02/2021
Time Taken				None Supplied	None Supplied	None Supplied
		Ε.		Hone Supplied	топе заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates	-		-			
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC21 - EC35	mg/kg	8	MCERTS	79	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	26	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	81	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	110	< 10	< 10
TITI CWG Allphatic (Ees Ee 11)	3, 3			110	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	27	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	11	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	37	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	47	< 10	< 10
VOCs			****	ı	1	
Chloromethane	μg/kg	1	ISO 17025	-	-	< 1.0
Chloroethane	μg/kg		NONE	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	< 1.0
Trichlorofluoromethane	μg/kg 	1	NONE	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg "	1	MCERTS	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	< 1.0
Benzene	μg/kg 	1	MCERTS	-	-	< 1.0
Tetrachloromethane	μg/kg 	1	MCERTS	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	< 1.0
Trichloroethene	μg/kg 	1	MCERTS	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	I -	I -	< 1.0

MCERTS

< 1.0

Dibromomethane

μg/kg

Your Order No: 108044

Lab Sample Number				1763799	1763800	1763801
Sample Reference				BH16	BH16	BH19
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.70	3.50	0.50
Date Sampled	05/02/2021	05/02/2021	05/02/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Bromodichloromethane	μg/kg	1	MCERTS	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3

Your Order No: 108044

Lab Sample Number				1763799	1763800	1763801
Sample Reference				BH16	BH16	BH19
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.70	3.50	0.50
Date Sampled				05/02/2021	05/02/2021	05/02/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	_	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	_	_	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	_	_	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS			< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1763799	BH16	None Supplied	1.7	Brown sandy clay with gravel.
1763800	BH16	None Supplied	3.5	Brown clay.
1763801	BH19	None Supplied	0.5	Brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Analytical Report Number : 21-55642 Project / Site name: Holloway Prison

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH16	None Supplied	S	1763800	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
BH16	None Supplied	S	1763800	b	TPH in (Soil)	L076-PL	b
BH16	None Supplied	S	1763800	b	TPHCWG (Soil)	L088/76-PL	b

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

11/02/2021

Analytical Report Number: 21-56224

Project / Site name: Holloway Prison Samples received on: 10/02/2021

Your job number: WIE16172 Samples instructed on/

Analysis started on:

Your order number: 108075 Analysis completed by: 18/02/2021

Report Issue Number: 1 Report issued on: 18/02/2021

Samples Analysed: 3 soil samples

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 108075

Lab Sample Number				1766824	1766825	1766826
Sample Reference				BH01E	BH01E	BH12
Sample Number	None Supplied	None Supplied	None Supplie			
Depth (m)	1.50	3.00	0.50			
Date Sampled				09/02/2021	09/02/2021	09/02/2021
Time Taken	None Supplied	None Supplied	None Supplie			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	22	24
Total mass of sample received	kg	0.001	NONE	2	1	1
Total mass of sample received					1	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	_	Not-detected
			<u> </u>	Not detected		Not detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	9.3	7.8	7.8
Organic Matter	%	0.1	MCERTS	0.9	0.2	2.4
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0052	0.0014	0.014
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.1	1.4
			<u> </u>	0.5	0.1	
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-	_	0.99
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	_	_	0.88
Fluorene	mg/kg	0.05	MCERTS		_	0.7
Phenanthrene	mg/kg	0.05	MCERTS	-	_	10
Anthracene	mg/kg	0.05	MCERTS	_	_	2.2
Fluoranthene	mg/kg	0.05	MCERTS	_	_	27
Pyrene	mg/kg	0.05	MCERTS	_	_	25
Benzo(a)anthracene	mg/kg	0.05	MCERTS	_	_	15
Chrysene	mg/kg	0.05	MCERTS	-	-	14
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_	_	21
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	6.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	_	16
indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	_	_	8.8
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	_	_	2.6
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	_	_	10
Coronene	mg/kg	0.05	NONE	_	_	2.2
	•					
Total PAH						
Total WAC-17 PAHs	mg/kg	0.85	NONE	-	-	164
	•					
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	14	21
Barium (aqua regia extractable)	mg/kg	1	MCERTS	60	28	120
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.98	1.2	1.6
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	1.1	2.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	39	40	41
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	39	40	41
Copper (aqua regia extractable)	mg/kg	1	MCERTS	32	33	67
.ead (aqua regia extractable)	mg/kg	1	MCERTS	49	17	170
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.5
Nolybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	0.54	1.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	47	42
2-1	ma#		MCEDIC			-

mg/kg mg/kg

mg/kg

mg/kg

1

MCERTS

MCERTS

MCERTS

< 1.0

73

110

< 1.0

71

88

< 1.0

85

140

Zinc (aqua regia extractable)

Selenium (aqua regia extractable)

Vanadium (aqua regia extractable)

Your Order No: 108075

Lab Sample Number				1766824	1766825	1766826
Sample Reference				BH01E	BH01E	BH12
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.50	3.00	0.50
Date Sampled				09/02/2021	09/02/2021	09/02/2021
Time Taken				None Supplied	None Supplied	None Supplied
Time taken		-	1	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates	-		-		_	
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 0.001	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
,	mg/kg	8	MCERTS		< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC21 - EC35		8.4	NONE	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg		MCERTS	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10		< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
	mg/kg	0.001	MCERTS			
TPH-CWG - Aromatic > EC8 - EC10	mg/kg	1	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC10 - EC12	mg/kg	2	MCERTS	< 1.0 < 2.0	< 1.0	< 1.0
TPH-CWG - Aromatic > EC12 - EC16	mg/kg	10	MCERTS		< 2.0	< 2.0
TPH-CWG - Aromatic > EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	78
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	8.4	NONE	< 10	< 10	140
TPH-CWG - Aromatic > EC35 - EC44		10	MCERTS	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	NONE	< 10	< 10	220
TPH-CWG - Aromatic (EC5 - EC44)	ilig/kg	10	NONE	< 10	< 10	220
VOCs						
Chloromethane	μg/kg	1	ISO 17025	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	< 1.0
Dit		-	MCEDIC		 	4.0

< 1.0

μg/kg

MCERTS

Dibromomethane

Your Order No: 108075

Lab Sample Number				1766824	1766825	1766826
Sample Reference	BH01E	BH01E	BH12			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	1.50	3.00	0.50			
Date Sampled				09/02/2021	09/02/2021	09/02/2021
Time Taken				None Supplied	None Supplied	None Supplied
Time raken	1	-	1	тионе заррнеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Bromodichloromethane	μg/kg	1	MCERTS	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	1	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	1	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	1	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	1	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	1	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	1	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0

SVOCs

51003						
Aniline	mg/kg	0.1	NONE	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3

Your Order No: 108075

Lab Sample Number				1766824	1766825	1766826
Sample Reference				BH01E	BH01E	BH12
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.50	3.00	0.50
Date Sampled				09/02/2021	09/02/2021	09/02/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	0.99
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	< 0.3
1-Chloroaniline	mg/kg	0.1	NONE	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	0.5
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	0.88
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	0.7
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	_	0.7
Azobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	_	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	_	10
Anthracene	mg/kg	0.05	MCERTS	-	-	2.2
Carbazole	mg/kg	0.3	MCERTS	_	_	0.8
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	_	0.6
Fluoranthene	mg/kg	0.05	MCERTS	-	_	27
Pyrene	mg/kg	0.05	MCERTS	-	_	25
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	_	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	15
Chrysene	mg/kg	0.05	MCERTS	-	-	14
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	21
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	_	6.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	16
	919	1		_		10
	ma/ka	0.05	MCERTS	_	_	QQ
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	8.8 2.6

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1766824	BH01E	None Supplied	1.5	Brown clay and sand with gravel.
1766825	BH01E	None Supplied	3	Brown clay.
1766826	BH12	None Supplied	0.5	Brown clay and sand with vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-56826

Project / Site name: Holloway Prison Samples received on: 12/02/2021

Your job number: WIE16172 Samples instructed on/ 15/02/2021

Analysis started on:

Your order number: 108122 Analysis completed by: 22/02/2021

Report Issue Number: 1 Report issued on: 22/02/2021

Samples Analysed: 2 soil samples

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 108122

Lab Sample Number		1770243	1770244			
Sample Reference	BH11	BH11				
Sample Number	None Supplied	None Supplied				
Depth (m)	0.50	1.00				
Date Sampled					11/02/2021	11/02/2021
Time Taken					None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status		
Stone Content		%	0.1	NONE	< 0.1	< 0.1
Moisture Content		%	0.01	NONE	17	18
Total mass of sample received		kg	0.001	NONE	1	1

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-
------------------	------	-----	-----------	--------------	---

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.9	7.9
Organic Matter	%	0.1	MCERTS	3.3	2.0
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.9	1.2

Heavy Metals / Metalloids

,					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	25
Barium (aqua regia extractable)	mg/kg	1	MCERTS	160	190
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1.4
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	2.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	38	43
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	39	43
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	-	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	95	77
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190	200
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.9
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.4	1.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	32
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	62	90
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	200	200

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0

Your Order No: 108122

Lab Sample Number				1770243	1770244	
Sample Reference				BH11	BH11	
Sample Number				None Supplied	None Supplied	
Depth (m)	0.50	1.00				
Date Sampled	11/02/2021	11/02/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons	-					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	9.1	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	15	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	15	< 10	

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1770243	BH11	None Supplied	0.5	Brown clay and loam with gravel and vegetation.
1770244	BH11	None Supplied	1	Brown clay and loam with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	croscopy in conjunction with disperion staining		D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	nromium in soil (Lower Level) Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS
Hexavalent chromium in soil	valent chromium in soil Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. In-house method		L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	tal organic carbon (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Robbie Moore

Waterman Infrastructure & Environment Ltd Pickfords Wharf Clink Street London SE1 9DG

t: 02079287888

e: robbie.moore@watermangroup.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-59678

Project / Site name:Holloway PrisonSamples received on:25/02/2021

Your job number: WIE16172 Samples instructed on/ 26/02/2021

Analysis started on:

Your order number: 108817 Analysis completed by: 05/03/2021

Report Issue Number: 1 **Report issued on:** 05/03/2021

Samples Analysed: 2 water samples

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.